Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=x^3-3x^2y+3xy^2-y^3+y^3-3y^2z+3yz^2-z^3+z^3-3z^2x+3zx^2-x^3\)
\(=-3x^2y+3xy^2-3y^2z+3yz^2-3z^2x+3zx^2\)
b)\(x\left(y^2-z^2\right)+z\left(x^2-y^2\right)+y\left(z^2-x^2\right)\)
=\(x\left(y^2-z^2\right)-\left(y^2-z^2+z^2-x^2\right)z+y\left(z^2-x^2\right)\)
=\(x\left(y^2-z^2\right)-z\left(y^2-z^2\right)-z\left(z^2-x^2\right)+y\left(z^2-x^2\right)\)
=\(\left(y^2-z^2\right)\left(x-z\right)+\left(z^2-x^2\right)\left(y-z\right)\)
=\(\left(y-z\right)\left(z-x\right)\left(-\left(y+z\right)+z+x\right)\)
=\(\left(y-z\right)\left(z-x\right)\left(x-y\right)\)
a ) \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
Biến đổi vế trái ta được :
\(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)\)
\(=x^2+xy+xz+xy+y^2+yz+zx+zy+z^2\)
\(=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
Phân tích các đa thức sau thành nhân tử:
a) x(y2-z2)+y(z2-x2)+z(x2-y2)
b) x(y+z)2+y(z+x)2+z(x+y)2-4xyz
b)x(y+z)2+y(z+x)2+z(x+y)2-4xyz
=[x(y+z)2-2xyz]+[y(z+x)2-2xyz]+z(x+y)2
=x(y2+2yz+z2-2yz)+y(x2+z2+2xz-2xz)+z(x+y)2
=x(y2+z2)+y(x2+z2)+z(x+y)2
=xy2+xz2+x2y+yz2+(xz+yz)(x+y)
=xy(x+y)+z2(x+y)+(xz+yz)(x+y)
=(x+y)(xy+z2+xz+yz)
=(x+y)[x(y+z)+z(y+z)]
=(x+y)(y+z)(x+z)
a)x(y2-z2)+y(z2-x2)+z(x2-y2)
=x(y-z)(y+z)+yz2-x2y+x2z-y2z
=(y-z)(xy+xz)-x2(y-z)-yz(y-z)
=(y-z)(xy+xz-x2-yz)
=(y-z)[x(y-x)-z(y-x)]
=(y-z)(y-x)(x-z)
a) \(=x^2+2xy+y^2+x^2-2xy+y^2=2\left(x^2+y^2\right)\)
b) \(=2\left(x^2-y^2\right)+2\left(x^2+y^2\right)=2x^2+2x^2+2y^2-2y^2=4x^2\)( cái này áp dụng luôn kết quả câu trên nha)
c) \(\left(x-y+z\right)^2++2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2=\left(x-y+z+y-z\right)^2=x^2\)
tớ cũng giống Nguyễn Thị Bích Hậu
tích cho nha 1 cái thôi cũng được .
\(\left(x+y\right)^2-2\left(x+y\right)z+z^2\)
\(=\left(x+y-z\right)^2\)