\(x+y=1 chứng minh 2(x^3+y^3)-3(x^2+y^2)=-1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

Ta có 2(x3 + y3) - 3(x2 + y2) = 2(x2 - xy + y2) - 3[(x + y)2 - 2xy] = 2[(x + y)2 - 3xy] - 3 + 6xy = 2 - 6xy - 3 + 6xy = -1

9 tháng 9 2018

Các bạn giải thích kxi hơn giùm mình

24 tháng 7 2019

1) \(VT=x^3+x^2y-x^2y-xy^2+xy^2+y^3=x^3+y^3=VP\)

2) \(VP=x^2+xy-xy-y^2=x^2-y^2=VT\)

3) \(VP=x^2+2\cdot x\cdot1+1=x^2+2x+1=VT\)

4) \(VP=x^3+x^2y+xy^2-x^2y-xy^2-y^3=x^3-y^3=VT\)

24 tháng 7 2019

1, \(\left(x^2-xy+y^2\right)\left(x+y\right)=x^3+y^3\\ x^3+x^2y-x^2y-xy^2+xy^2+y^3=x^3+y^3\\ x^3+y^3=x^3+y^3\left(đúng\right)\)Vậy ta được đpcm

2, \(x^2-y^2=\left(x-y\right)\left(x+y\right)\\ x^2-y^2=x^2+xy-xy-y^2\\ x^2-y^2=x^2-y^2\left(đúng\right)\)Vậy ta được đpcm

3, \(x^2+2x+1=\left(x+1\right)^2\\ x^2+2x+1=\left(x+1\right)\left(x+1\right)\\ x^2+2x+1=x^2+x+x+1\\ x^2+2x+1=x^2+2x+1\left(đúng\right)\)Vậy ta được đpcm

4, \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\\ x^3-y^3=x^3+x^2y+xy^2-x^2y-xy^2-y^3\\ x^3-y^3=x^3-y^3\left(đúng\right)\)Vậy ta được đpcm

11 tháng 11 2015

dùng hằng đẳng thúc cho mẫu rút gọn ta được 
\(\frac{1}{x^2+x+1}-\frac{1}{Y^2+y+1}+\frac{2\left(x+y\right)}{x^2y^2+3}\)=\(\frac{y^2+y+1-x^2-x-1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
=\(\frac{\left(y-x\right)\left(y+x\right)+\left(y-x\right)}{x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
=\(\frac{-2\left(x-y\right)}{xy\left(x+y\right)+\left(x+y\right)+1+x^2y^2+x^2+y^2+xy}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
=\(\frac{-2\left(x-y\right)}{2xy+x^2+y^2+x^2y^2+2}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
 

6 tháng 6 2017

Ta có:

\(\left(a+b+c\right)^2=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)

\(=a^2+2ab+b^2+2ac+2bc+c^2\)

\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)\) \(\Rightarrowđpcm\)

6 tháng 6 2017

Đề câu b max hư cấuoho

NV
13 tháng 4 2020

\(x^8+x^8+y^8+y^8+y^8+z^8+z^8+z^8\ge8\sqrt[8]{x^{16}y^{24}z^{24}}=8x^2y^3z^3\)

Tương tự: \(3x^8+2y^8+3z^8\ge8x^3y^2z^3\)

\(3x^8+3y^8+2z^8\ge8x^3y^3z^2\)

Cộng vế với vế:

\(8\left(x^8+y^8+z^8\right)\ge8\left(x^2y^3z^3+x^3y^2z^3+x^3y^3z^2\right)\)

\(\Leftrightarrow\frac{x^8+y^8+z^8}{x^3y^3z^3}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Dấu "=" xảy ra khi \(x=y=z\)