Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2A=6x+4y+\frac{12}{x}+\frac{16}{y}=3x+\frac{12}{x}+y+\frac{16}{y}+3x+3y\)
Áp dụng bất đẳng thức cô si cho 2 số dương, ta có:
\(3x+\frac{12}{x}\ge2.\sqrt{36}=12\)
\(y+\frac{16}{y}\ge2\sqrt{16}=8\)
Lại có\(x+y\ge6\Rightarrow3x+3y\ge18\)
Vậy \(2A\ge12+8+18\Leftrightarrow2A\ge38\Leftrightarrow A\ge19\) \(a=19\Leftrightarrow x=2;y=4\)
Ta có:\(\frac{3}{2}x+\frac{6}{x}\ge2\sqrt{\frac{3}{2}x.\frac{6}{x}}=6\)
\(\frac{y}{2}+\frac{8}{y}\ge2\sqrt{\frac{y}{2}.\frac{8}{y}}=4\)
\(\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)
Cộng vế theo vế \(\Rightarrow A\ge19\)
"="<=>x=2;y=4
2.
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(P=\frac{3x}{2}+\frac{6}{x}+\frac{y}{2}+\frac{8}{y}+\frac{3x}{2}+\frac{3y}{2}\)
\(P=\left(\frac{3x}{2}+\frac{6}{x}\right)+\left(\frac{y}{2}+\frac{8}{y}\right)+\frac{3}{2}\left(x+y\right)\)
\(P\ge2\sqrt{\frac{18x}{2x}}+2\sqrt{\frac{8y}{2y}}+\frac{3}{2}.6=19\)
\(P_{min}=19\) khi \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
1.
Do \(0\le a;b;c\le1\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-abc-a-b-c+ab+bc+ca\ge0\)
\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\le1\)
Mặt khác \(0\le a;b;c\le1\Rightarrow\left\{{}\begin{matrix}b^2\le b\\c^3\le c\end{matrix}\right.\)
\(\Rightarrow a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\le1\) (đpcm)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị
Áp dụng BĐT AM-GM:
\(P=3x+2y+\dfrac{6}{x}+\dfrac{8}{y}\)
\(=3x+\dfrac{12}{x}+2y+\dfrac{32}{y}-6\left(\dfrac{1}{x}+\dfrac{4}{y}\right)\)
\(=2\sqrt{3x\cdot\dfrac{12}{x}}+2\sqrt{2y\cdot\dfrac{32}{y}}-6\cdot\dfrac{\left(1+2\right)^2}{x+y}\)
\(=28-6\cdot\dfrac{\left(1+2\right)^2}{6}=19\)
\("=" \Leftrightarrow x=2;y=4\)
Câu trên mình thấy sai sai vì nếu x càng lớn thì A càng nhỏ , bạn xem lại đề nhé
Câu 2
\(\frac{3}{2}x+\frac{6}{x}\ge6\); \(\frac{1}{2}y+\frac{8}{y}\ge4\)
\(\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)
Cộng các bĐT trên
=> \(3x+2y+\frac{6}{x}+\frac{8}{y}\ge9+6+4=19\)
MinP=19 khi x=2;y=4
a) Ta có : \(x+y+\frac{2}{x}+\frac{2}{y}=\left(2x+\frac{2}{x}\right)+\left(2y+\frac{2}{y}\right)-\left(x+y\right)\)
Áp dụng bất đẳng thức Cauchy, ta có : \(2x+\frac{2}{x}\ge2\sqrt{2x.\frac{2}{x}}=4\) (1)
Tương tự : \(2y+\frac{2}{y}\ge2\sqrt{2y.\frac{2}{y}}=4\)(2) ; \(x+y\le2\Rightarrow-\left(x+y\right)\ge-2\)(3)
Cộng (1) , (2) , (3) theo vế được: \(\left(2x+\frac{2}{x}\right)+\left(2y+\frac{2}{y}\right)-\left(x+y\right)\ge4+4-2=6\)
Hay \(x+y+\frac{2}{x}+\frac{2}{y}\ge6\) (đpcm)
b) Áp dụng bất đẳng thức \(x^2+y^2+z^2\ge xy+yz+zx\) được :
\(a^8+b^8+c^8=\left(a^4\right)^2+\left(b^4\right)^2+\left(c^4\right)^2\ge\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4\)
Tương tự : \(\left(a^2b^2\right)^2+\left(b^2c^2\right)^2+\left(c^2a^2\right)^2\ge a^2b^4c^2+b^2c^4a^2+c^2a^4b^2\)
\(\Rightarrow a^4+b^4+c^4\ge a^2b^2c^2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^8+b^8+c^8\ge a^2b^2c^2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{a^2b^2c^2\left(a^2+b^2+c^2\right)}{a^3b^3c^3}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ac}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(B=3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(=\frac{3x}{2}+\frac{6}{x}+\frac{3x}{2}+\frac{y}{2}+\frac{8}{y}+\frac{3y}{2}\)
Áp dụng Cauchy ta được :
\(\frac{3x}{2}+\frac{6}{x}\ge2\sqrt{\frac{3x}{2}.\frac{6}{x}}=6\)
\(\frac{y}{2}+\frac{8}{y}\ge2\sqrt{\frac{8y}{2y}}=4\)
\(\Rightarrow B\ge6+4+\frac{3\left(x+y\right)}{2}\ge6+4+9=19\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=6\\\frac{y}{2}=\frac{8}{y}\\\frac{3x}{2}=\frac{6}{x}\end{cases}\Leftrightarrow x=2;y=4}\)