K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

P=5x+3y+12/x+16/y 
=3x+12/x+y+16/y+2(x+y) 
áp dụng cosi: 3x+12/x>=2√(3.12)=12 
y+16/y>=8 
lại có 2(x+y)>=2.6=12 
nên 
P>=12+8+12=32 
dấu = khi 3x=12/x và y=16/y và x+y=6 
==> x=2; y=4 
giá trị nhỏ nhất P=32 khi x=2; y=4

@Nguồn: Yahoo

24 tháng 12 2016

tớ biểu là cm đề sai chứ ko giải,cái này bít lâu rùi

NV
11 tháng 12 2018

\(P=3x+\dfrac{12}{x}+y+\dfrac{16}{y}+2\left(x+y\right)\ge2\sqrt{3x.\dfrac{12}{x}}+2\sqrt{y.\dfrac{16}{y}}+2.6=32\)

\(\Rightarrow P_{min}=32\) khi \(\left\{{}\begin{matrix}3x=\dfrac{12}{x}\\y=\dfrac{16}{y}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

20 tháng 7 2016

Áp dụng bất đẳng thức  \(AM-GM\)  đối với từng bộ số trong  \(D\)  ta có:

\(D=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\ge2\sqrt{3x.\frac{12}{x}}+2\sqrt{y.\frac{16}{y}}+2.6=32\)

Dấu  \("="\)  xảy ra  khi và chỉ khi  \(\hept{\begin{cases}x+y=6\\3x=\frac{12}{x}\\y=\frac{16}{y}\end{cases}\Leftrightarrow}\)  \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)

Vậy,  GTNN của  \(D\)  là  \(32\)  \(\Leftrightarrow\)  \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)

3 tháng 1 2016

1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)

\(\)

3 tháng 1 2016

phải là \(\le12\)

26 tháng 7 2016

P=5x+3y+12/x+16/y 
=3x+12/x+y+16/y+2(x+y) 
áp dụng cosi: 3x+12/x>=2√(3.12)=12 
y+16/y>=8 
lại có 2(x+y)>=2.6=12 
nên 
P>=12+8+12=32 
dấu = khi 3x=12/x và y=16/y và x+y=6 
==> x=2; y=4 
giá trị nhỏ nhất P=32 khi x=2; y=4

11 tháng 8 2018

làm bừa thui,ai tích mình mình tích lại

số dư lớn nhất bé hơn 175 là 174

số nhỏ nhất có 4 chữ số là 1000

Mà 1000:175=5( dư 125)

số đó là:

29 tháng 3 2022

\(S=\dfrac{x^3}{16\left(y+16\right)}+\dfrac{y^3}{16\left(x+16\right)}+\dfrac{2021}{2022}\)

\(\dfrac{x^3}{16\left(y+16\right)}+\dfrac{y+16}{100}+\dfrac{16}{80}\ge3\sqrt[3]{\dfrac{x^3\left(y+16\right).16}{16\left(y+16\right).100.80}}=\dfrac{3x}{20}\)

\(tương\) \(tự\Rightarrow\dfrac{y^3}{16\left(x+16\right)}\ge\dfrac{3y}{20}\)

\(\Rightarrow S\ge\dfrac{3x}{20}+\dfrac{3y}{20}-\left(\dfrac{x+16}{100}+\dfrac{y+16}{100}\right)-2.\dfrac{16}{80}+\dfrac{2021}{2022}=\dfrac{3x+3y}{20}-\dfrac{x+y+32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}=\dfrac{15x+15y-x-y-32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}=\dfrac{14\left(x+y\right)-32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}\)

\(xy=16\le\dfrac{\left(x+y\right)^2}{4}\Rightarrow x+y\ge8\Rightarrow S\ge\dfrac{14.8-32}{100}-\dfrac{2}{5}+\dfrac{2021}{2022}=\dfrac{2}{5}+\dfrac{2021}{2022}\)

\(\Rightarrow minS=\dfrac{2}{5}+\dfrac{2021}{2022}\Leftrightarrow x=y=4\)

NV
29 tháng 3 2022

\(\dfrac{x^3}{16\left(y+16\right)}+\dfrac{y+16}{100}+\dfrac{1}{5}\ge3\sqrt[3]{\dfrac{x^3\left(y+16\right)}{16.100.5\left(y+16\right)}}=\dfrac{3x}{20}\)

Tương tự: \(\dfrac{y^3}{16\left(x+16\right)}+\dfrac{x+16}{100}+\dfrac{1}{5}\ge\dfrac{3y}{20}\)

Cộng vế:

\(S+\dfrac{x+y+32}{100}+\dfrac{2}{5}\ge\dfrac{3\left(x+y\right)}{20}+\dfrac{2021}{2022}\)

\(S\ge\dfrac{9}{20}\left(x+y\right)-\dfrac{42}{25}+\dfrac{2021}{2022}\ge\dfrac{9}{20}.2\sqrt{xy}-\dfrac{42}{25}+\dfrac{2021}{2022}=...\)

10 tháng 10 2018

\(A=5x+3y+\frac{12}{x}+\frac{16}{y}=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\)

Áp dụng BĐT AM-GM cho 2 số không âm:

\(A=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\ge2\sqrt{\frac{36x}{x}}+2\sqrt{\frac{16y}{y}}+2\left(x+y\right)\)

\(=12+8+2\left(x+y\right)\ge32\) (Do \(x+y\ge6\))

Vậy Min A = 32. Dấu "=" xảy ra <=> x=2; y=4.