K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2016

mk mới học lớp 5 nhưng vai trò bình đẳng là gì zậy ? 

2 tháng 6 2016

x,y có vai trò bình đẳng nghĩa là nếu x+y=r và r=2+n thì x hay y đều có thể bằng 2.

31 tháng 7 2015

x^2 + y^2 = (x + y +\(\sqrt{2xy}\))(x + y - \(\sqrt{2xy}\))

21 tháng 5 2018
  1. {\displaystyle a^{2}+b^{2}=(a+b)^{2}-2ab=(a-b)^{2}+2ab}
  2. {\displaystyle a^{2}-b^{2}=(a+b)(a-b)}

 các bn tk mk nha .mk cảm ơn nhiều

4 tháng 6 2023

Ta có \(27=xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}\) \(\Leftrightarrow9\ge\sqrt[3]{\left(xyz\right)^2}\) \(\Leftrightarrow729\ge\left(xyz\right)^2\) \(\Leftrightarrow27\ge xyz\) \(\Leftrightarrow27\left(xyz\right)^2\ge\left(xyz\right)^3\) \(\Leftrightarrow\sqrt{3}\sqrt[3]{xyz}\ge\sqrt{xyz}\) (lấy căn bậc 6 2 vế) \(\Leftrightarrow3\sqrt[3]{xyz}\ge\sqrt{3xyz}\)

Do đó \(x+y+z\ge3\sqrt[3]{xyz}\ge\sqrt{3xyz}\). ĐTXR \(\Leftrightarrow x=y=z=3\) 

30 tháng 6 2018

a)  \(x^2+20x+100=\left(x+10\right)^2\)

b)  \(y^2-14y+49=\left(y-7\right)^2\)

p/s: chúc bn học tốt

30 tháng 6 2018

Bạn có thể giải cụ thể hơn hộ mk đc k ạ

27 tháng 12 2023

(x + y)² = x² + 2xy + y²

29 tháng 12 2021

cộng thêm -4xy+2y2

NV
26 tháng 3 2022

1.

\(\left(x+y\right)^2=\left(\dfrac{1}{2}.2x+\dfrac{1}{3}.3y\right)^2\le\left(\dfrac{1}{4}+\dfrac{1}{9}\right)\left(4x^2+9y^2\right)=\dfrac{169}{36}\)

\(\Rightarrow-\dfrac{13}{6}\le x+y\le\dfrac{13}{6}\)

Dấu "=" lần lượt xảy ra tại \(\left(-\dfrac{3}{2};-\dfrac{2}{3}\right)\) và \(\left(\dfrac{3}{2};\dfrac{2}{3}\right)\)

2.

\(\left(y-2x\right)^2=\left(\dfrac{1}{4}.4y+\left(-\dfrac{1}{3}\right).6x\right)^2\le\left(\dfrac{1}{16}+\dfrac{1}{9}\right)\left(16y^2+36x^2\right)=\dfrac{25}{16}\)

\(\Rightarrow\left|y-2x\right|\le\dfrac{5}{4}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\mp\dfrac{2}{5};\pm\dfrac{9}{20}\right)\)

NV
26 tháng 3 2022

3.

\(B^2=\left(6.\sqrt{x-1}+8\sqrt{3-x}\right)^2\le\left(6^2+8^2\right)\left(x-1+3-x\right)=200\)

\(\Rightarrow B\le2\sqrt{10}\)

Dấu "=" xảy ra khi \(\dfrac{\sqrt{x-1}}{6}=\dfrac{\sqrt{3-x}}{8}\Leftrightarrow x=\dfrac{43}{25}\)

\(B=6\sqrt{x-1}+6\sqrt{3-x}+2\sqrt{3-x}\ge6\sqrt{x-1}+6\sqrt{3-x}\)

\(B\ge6\left(\sqrt{x-1}+\sqrt{3-x}\right)\ge6\sqrt{x-1+3-x}=6\sqrt{2}\)

\(B_{min}=6\sqrt{2}\) khi \(\sqrt{3-x}=0\Rightarrow x=3\)

4.

\(49=\left(3a+4b\right)^2=\left(\sqrt{3}.\sqrt{3}a+2.2b\right)^2\le\left(3+4\right)\left(3a^2+4b^2\right)\)

\(\Rightarrow3a^2+4b^2\ge\dfrac{49}{7}=7\)

Dấu "=" xảy ra khi \(a=b=1\)