Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2x+xy-2y=7$
$x(2+y)-2y=7$
$x(2+y)-2(y+2)=3$
$(x-2)(y+2)=3$
Do $x,y$ là số nguyên nên $x-2, y+2$ cũng là số nguyên. Do đó ta có bảng sau:
x-2 | 1 | 3 | -1 | -3 |
y+2 | 3 | 1 | -3 | -1 |
x | 3 | 5 | 1 | -1 |
y | 1 | -1 | -5 | -3 |
Kết luận | thỏa mãn | thỏa mãn | thỏa mãn | thỏa mãn |
\(2x+xy-2y=7\)
\(\Rightarrow x\left(2+y\right)-2y-4+4=7\)
\(\Rightarrow x\left(2+y\right)-2\left(y+2\right)=3\)
\(\Rightarrow\left(x-2\right)\left(y+2\right)=3\)
\(\Rightarrow\left(x-2\right);\left(y+2\right)\in\left\{-1;1;-3;3\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;-5\right);\left(3;1\right);\left(-1;-3\right);\left(5;-1\right)\right\}\left(x;y\inℤ\right)\)
Tìm x,y \(\in\) Z thôi nhỉ ?
a, ( 2x + 1 ).( 4 - y ) = 10
= > ( 2x + 1 ) , ( 4 - y ) \(\inƯ\left(10\right)\in\left\{-10;-5;-2;-1;1;2;5;10\right\}\) thỏa mãn \(\left(2x+1\right)\left(4-y\right)=10\)
Đến đây em lập bảng xét 8 TH ( 2x + 1 ) , ( 4 - y ) \(\in\left\{\left(-10;-1\right);\left(-1;-10\right);\left(-5;-2\right);\left(-2;-5\right);\left(1;10\right);\left(10;1\right);\left(2;5\right);\left(5;2\right)\right\}\)
rồi tìm ra x,y nhé !
b, 2x - 4 + xy - 2y = -3
<=> 2( x - 2 ) + y( x - 2 ) = -3
<=> ( x - 2 ) ( 2 + y ) = -3
Tương tự câu a,
Tìm \(x,y\inℤ\)
1) xy + 3x - 7y = 21
xy + 3x - 7y - 21 = 0
x (y + 3) - 7 (y + 3) = 0
(y + 3) (x - 7) = 0
\(\Rightarrow\orbr{\begin{cases}y+3=0\\x-7=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\y=-3\end{cases}}\)
2) xy + 3x - 2y = 11
xy + 3x - 2y - 6 = 5
x (y + 3) - 2 (y + 3) = 5
(y + 3) (x - 2) = 5
Vì \(x,y\inℤ\) nên \(x-2,y+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
x - 2 | 1 | -1 | 5 | -5 |
y + 3 | 5 | -5 | 1 | -1 |
x | 3 | 1 | 7 | -3 |
y | 2 | -8 | -2 | -4 |
2:
a: A(x)=0
=>5x-10-2x-6=0
=>3x-16=0
=>x=16/3
b: B(x)=0
=>5x^2-125=0
=>x^2-25=0
=>x=5 hoặc x=-5
c: C(x)=0
=>2x^2-x-3=0
=>2x^2-3x+2x-3=0
=>(2x-3)(x+1)=0
=>x=3/2 hoặc x=-1
a)\(\left(2x^2+4x^2\right)+\left[\left(-5xy\right)+xy\right]+\left(3y^2-2y^2\right)=6x^2-4xy+y^2\)
b)\(2x^2-5xy+3y^2+4x^2+xy-2y^2+2x^2+4xy-5y^2\)
=\(\left(2x^2+4x^2+2x^2\right)+\left(-5xy+xy+4xy\right)+\left(3y^2-2y^2-5y^2\right)\)
=\(8x^2-4y^2\)
a) \(x^3\left(\frac{-1}{4}x^2y\right).\left(2x^3y^4\right)\)
\(=\left(\frac{-1}{4}.2\right).\left(x^3x^2x^3\right).\left(yy^4\right)\)
\(=\frac{-1}{2}x^8y^5\)
- Hệ số: -1/2
- Bậc: 13
b) \(\left(-3x^2y^3\right).xy^2.\left(\frac{-5}{3}x^3y\right)\)
\(=\left(-3.(\frac{-5}{3})\right).\left(x^2xx^3\right).\left(y^3y^2y\right)\)
\(=5x^6y^6\)
- Hệ số: 5
- Bậc : 12
x = 5 ; y = 4 nha bạn.
Bạn Nguyễn Đình Toàn làm đúng rồi đó ! Bạn tham khảo của bạn ấy nhé ! Chúc bạn học giỏi !