K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

Bạn viết rõ ra đi, khó nhìn lắm

12 tháng 3 2017

Mình viết lại cho dễ đọc.

a) A+ x2+4xy + x2- y2 = 2y +3xy- 5x2y +5x2y + 2x2y2

b) A- ( -2 x3) -y2+ 32x2- 4xy - y = 10z2 + y2z2

c) A= -2x + 5xy - 3x2y + 2x2y2 - 2 y2x

B= xy- 3x2y+ 2x2y + 2x2y2 - 2- y2x

P(x)+Q(x)

=3x^2y-2x+5xy^2-7y^2+3xy^2-7y^2-9x^2y-x-5

=8xy^2-14y^2-6x^2y-3x-5

=>Chọn A

13 tháng 2 2022

\(P=\dfrac{1}{3}x^2y+xy^2-xy+\dfrac{1}{2}xy^2-5xy-\dfrac{1}{3}x^2y=\dfrac{3}{2}xy^2-6xy\)

Thay x = 2 ; y = 1 ta được 

\(\dfrac{3}{2}.2.1-6.2.1=3-12=-9\)

13 tháng 2 2022

Thank you..

2: Thay \(x=\dfrac{1}{2}\) và y=2 vào M, ta được:

\(M=\dfrac{2\cdot\left(\dfrac{1}{2}\right)^2\cdot2-1.2\cdot\left(3\cdot\dfrac{1}{2}-2\cdot2\right)}{\dfrac{1}{2}\cdot2}\)

\(=4\cdot\dfrac{1}{4}-1.2\left(\dfrac{3}{2}-4\right)\)

\(=1-1.8+4.8\)

\(=4\)

1: Ta có: \(\left(-\dfrac{2}{3}x^3y^2\right)z\cdot5xy^2z^2\)

\(=\left(-\dfrac{2}{3}\cdot5\right)\cdot\left(x^3\cdot x\right)\cdot\left(y^2\cdot y^2\right)\cdot\left(z\cdot z^2\right)\)

\(=\dfrac{-10}{3}x^4y^4z^3\)

a: M=3/4xy^2-2x^2y+2y^3-1/3x^2+1/2x^2y-5xy^2+x^3-y^3

=y^3-1/3x^2+x^3-17/4xy^2-3/2x^2y

29 tháng 3 2022

`Answer:`

undefined

\(a)\left(-3x^2y-2xy^2+6\right)+\left(-x^2y+5xy^2-1\right)\)

\(=-3x^2y-2xy^2+6+-x^2y+5xy^2-1\)

\(=\left(-3x^2y-x^2y\right)+\left(-2xy^2+5xy^2\right)+\left(6-1\right)\)

\(=-4x^2y+3xy^2+5\)

\(b)\left(1,6x^3-3,8x^2y\right)+\left(-2,2x^2y-1,6x^3+0,5xy^2\right)\)

\(=1,6x^3-3,8x^2y+-2,2x^2y-1,6x^3+0,5xy^2\)

\(=\left(1,6x^3-1,6x^3\right)+\left(-3,8x^2y+-2,2x^2y\right)+0,5xy^2\)

\(=-6x^2y+0,5xy^2\)

\(c)\left(6,7xy^2-2,7xy+5y^2\right)-\left(1,3xy-3,3xy^2+5y^2\right)\)

\(=6,7xy^2-2,7xy+5y^2-1,3xy+3,3xy^2-5y^2\)

\(=\left(6,7xy^2+3,3xy^2\right)+\left(-2,7xy-1,3xy\right)+\left(5y^2-5y^2\right)\)

\(=10xy^2+-4xy\)

\(=10xy^2-4xy\)

\(d)\left(3x^2-2xy+y^2\right)+\left(x^2-xy+2y^2\right)-\left(4x^2-y^2\right)\)

\(=3x^2-2xy+y^2+x^2-xy+2y^2-4x^2+y^2\)

\(=\left(3x^2+x^2-4x^2\right)+\left(-2xy-xy\right)+\left(y^2+2y^2+y^2\right)\)

\(=-3xy+4y^2\)

\(e)\left(x^2+y^2-2xy\right)-\left(x^2+y^2+2xy\right)+\left(4xy-1\right)\)

\(=x^2+y^2-2xy-x^2-y^2-2xy+4xy-1\)

\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(-2xy-2xy+4xy\right)-1\)

\(=-1\)