K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có :

\(x+y=\frac{1}{2};y+z=\frac{1}{3};z+x=\frac{1}{6}\)

\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)

\(\Rightarrow2x+2y+2z=\frac{3}{6}+\frac{2}{6}+\frac{1}{6}\)

\(\Rightarrow2\left(x+y+z\right)=1\)

\(\Rightarrow x+y+z=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}\left(x+y+z\right)-\left(x+y\right)=\frac{1}{2}-\frac{1}{2}\Rightarrow z=0\\\left(x+y+z\right)-\left(y+z\right)=\frac{1}{2}-\frac{1}{3}\Rightarrow x=\frac{1}{6}\\\left(x+y+z\right)-\left(z+x\right)=\frac{1}{2}-\frac{1}{6}\Rightarrow y=\frac{1}{3}\end{cases}}\)

Vậy \(x=\frac{1}{6},y=\frac{1}{3};z=0\) .

30 tháng 9 2020

\(x+y=\frac{1}{2};y+z=\frac{1}{3};z+x=\frac{1}{6}\)

Ta có:\(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)

\(\Leftrightarrow2\left(x+y+z\right)=1\)

\(\Leftrightarrow x+y+z=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}\left(x+y+z\right)-\left(x+y\right)=\frac{1}{2}-\frac{1}{2}=0\\\left(x+y+z\right)-\left(y+z\right)=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\\\left(x+y+z\right)-\left(z+x\right)=\frac{1}{2}-\frac{1}{6}=\frac{1}{3}\end{cases}}\)

Vậy....

12 tháng 4 2015

Giải nhanh và chi tiết giúp mình nhé. 22/4 là mình thi HSG rồi

 

1 tháng 2 2016

 Tính ra nhé

1 tháng 2 2016

Tính lần lượt ra nhé

16 tháng 2 2021

ta có giá trị tuyệt đối luôn lớn hơn 0 và mũ chẵn cũng vậy

mà VT=VP=0 nên

2x-1=0 và y-2/5=0; x+y=z

nên: x=1/2;y=2/5; z=9/10

13 tháng 2 2018

nếu x=1 thì y=6

nếu x=0 thì y=18

nếu x=4 thì y=2