Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(x^2+30-11x\right)\left(x^2+30-13x\right)-24x^2\)
\(=\left(x^2+30\right)^2-24x\left(x^2+30\right)+143x^2-24x^2\)
\(=\left(x^2+30\right)^2-24x\left(x^2+30\right)+119x^2\)
\(=\left(x^2-17x+30\right)\left(x^2-7x+30\right)\)
\(=\left(x-2\right)\left(x-15\right)\left(x^2-7x+30\right)\)
1) \(=9x^2-1\)
2) \(=9x^4-y^2\)
3)\(=25x^2-\dfrac{9}{4}\)
4) \(=x^3-1\)
5) \(=x^6-8\)
6) \(=x^3-64\)
7) \(=27x^3+8\)
8) \(=x^3-64\)
9) \(=x^3-\dfrac{1}{27}\)
10) \(x^3+\dfrac{1}{27}\)
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
\(\Leftrightarrow-13x=26\Leftrightarrow x=-2\)
b) \(5x\left(x-1\right)=x-1\)
\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=\frac{1}{5}\end{array}\right.\)
c) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=2\end{array}\right.\)
d) \(\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=8\\x=-\frac{2}{3}\end{array}\right.\)
e) \(3x^3-48x=0\)
\(\Leftrightarrow3x\left(x^2-16\right)=0\)
\(\Leftrightarrow3x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=4\\x=-4\end{array}\right.\)
f) \(x^3+x^2-4x=4\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=2\\x=-2\end{array}\right.\)
\(\left(x+1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)=\left(x-3\right)^3+3\left(2x+1\right)^2-\left(x^3-5x+1\right)\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3-27=x^3-9x^2+27x-27+12x^2+12x+3-x^3+5x-1\)
\(\Leftrightarrow3x^2+3x-26=3x^2+44x-25\)
\(\Leftrightarrow-41x=1\)
\(\Leftrightarrow x=-\dfrac{1}{41}\)
\(-2x^4-6x^2+x^3+3x+7=-2x^2\left(x^2+3\right)+x\left(x^2+3\right)+7\)
\(=\left(x^2+3\right)\left(-2x^2+x\right)+7\)
=>số dư là 7
\(x\left(x+1\right)\left(x+6\right)-x^3=5x\)
\(\Leftrightarrow\left(x^2+x\right)\left(x+6\right)-x^3=5x\)
\(\Leftrightarrow x^2\left(x+6\right)+x\left(x+6\right)-x^3=5x\)
\(\Leftrightarrow x^3+6x^2+x^2+6x-x^3-5x=0\)
\(\Leftrightarrow7x^2+x=0\)
\(\Leftrightarrow x\left(7x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{7}\end{cases}}\)
#)Giải :
\(x\left(x+1\right)\left(x+6\right)-x^3=5x\)
\(\Leftrightarrow x\left(x^2+7x+6\right)-x^3-5x=0\)
\(\Leftrightarrow x^3+7x^2+6x-x^3-5x=0\)
\(\Leftrightarrow7x^2+x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\7x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{7}\end{cases}}}\)
Vậy, phương trình đã cho có hai nghiệm là x = { 0;-1/7 }