Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4\left(x+3\right)^2=\left(2x+6\right)^2\)
\(\Leftrightarrow2^2\left(x+3\right)^2=\left(2x+6\right)^2\)
\(\Leftrightarrow\left(2x+6\right)^2=\left(2x+6\right)^2\)
Vậy tập nghiệm của phương trình là \(S=ℝ\)
b) \(\left(3x+4\right)^2=4\left(x+3\right)\)
\(\Leftrightarrow9x^2+24x+16=4x+12\)
\(\Leftrightarrow9x^2+20x+4=0\)
\(\Leftrightarrow\left(9x+2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}9x+2=0\\x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{9}\\x=-2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{2}{9};-2\right\}\)
c) \(\left(6x+3\right)^2=\left(x-4\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}6x+3=x-4\\6x+3=4-x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x+7=0\\7x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{5}\\x=\frac{1}{7}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{7}{5};\frac{1}{7}\right\}\)
d) \(\left(x^2+3x+2\right)\left(x^2+3x+3\right)-2=0\)
Đặt \(t=x^2+3x+2\), ta có :
\(t\left(t+1\right)-2=0\)
\(\Leftrightarrow t^2+t-2=0\)
\(\Leftrightarrow\left(t+2\right)\left(t-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+2=0\\t-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+3x+4=0\\x^2+3x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{7}{4}=0\left(ktm\right)\\\left(x+\frac{3}{2}\right)^2-1,25=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow x=\pm\sqrt{1,25}-\frac{3}{2}=-\frac{3\pm\sqrt{5}}{2}\)(tm)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{3\pm\sqrt{5}}{2}\right\}\)
e)Đề bài sai ! Mik sửa :
\(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)
Đặt \(t=x^2-5x\), ta có :
\(t^2+10t-24=0\)
\(\Leftrightarrow\left(t+12\right)\left(t-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+12=0\\t-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-5x+12=0\\x^2-5x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{5}{2}\right)^2+\frac{23}{4}=0\left(ktm\right)\\\left(x-\frac{5}{2}\right)^2-\frac{33}{4}=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow x=\pm\frac{\sqrt{33}}{2}+\frac{5}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{\sqrt{33}}{2}+\frac{5}{2};-\frac{\sqrt{33}}{2}+\frac{5}{2}\right\}\)
f) \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+2\right)-12=0\)
Đặt \(t=x^2+x+1\), ta có :
\(t\left(t+1\right)-12=0\)
\(\Leftrightarrow t^2+t-12=0\)
\(\Leftrightarrow\left(t+4\right)\left(t-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x+5=0\\x^2+x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}-\frac{1}{2}=1\left(tm\right)\\x=-\frac{3}{2}-\frac{1}{2}=-2\left(tm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;-2\right\}\)
g) \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)
Đặt \(t=x^2+x\), ta có :
\(t\left(t-2\right)-24=0\)
\(\Leftrightarrow t^2-2t-24=0\)
\(\Leftrightarrow\left(t+4\right)\left(t-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}-\frac{1}{2}=2\left(tm\right)\\x=-\frac{5}{2}-\frac{1}{2}=-3\left(tm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-3\right\}\)
h) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
Đặt \(t=x^2+5x+4\), ta có :
\(t\left(t+2\right)-24=0\)
\(\Leftrightarrow t^2+2t-24=0\)
\(\Leftrightarrow\left(t+6\right)\left(t-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+6=0\\t-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+5x+10=0\\x^2+5x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\x\left(x+5\right)=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-5\left(tm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;-5\right\}\)
1 ) đặt ẩn phụ
căn(x+4) = a
căn(4-x) = b
=> a^2 + b^2 = 8 ; a^2 - b^2 = 2x
Thay vào phương trình giải rất dễ
2) điều kiện xác định " x lớn hơn hoặc = 1
từ ĐKXĐ => vế trái lớn hơn hoặc = 1
=> 2 - x lớn hơn hoặc = 1
=> x nhỏ hơn hoặc = 1
kết hợp ĐKXĐ => x = 1
3) mk chưa biết làm
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\) (1)
\(\Leftrightarrow\left(x^2+x\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow\left(x^3+2x^2+x^2+2x\right)\left(x+3\right)=24\)
\(\Leftrightarrow\left(x^3+3x^2+2x\right)\left(x+3\right)=24\)
\(\Leftrightarrow x^4+3x^3+3x^3+9x^2+2x^2+6x=24\)
\(\Leftrightarrow x^4+6x^3+11x^2+6x=24\)
\(\Leftrightarrow x^4+6x^3+11x^2+6x-24=0\)
\(\Leftrightarrow x^4-x^3+7x^3-7x^2+18x^2-18x+24x-24=0\)
\(\Leftrightarrow x^3\left(x-1\right)+7x^2\left(x-1\right)+18x\left(x-1\right)+24\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+7x^2+18x+24\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+4x^2+3x^2+12x+6x+24\right)=0\)
\(\Leftrightarrow\left(x-1\right)\cdot\left[x^2\left(x+4\right)+3x\left(x+4\right)+6\left(x+4\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+4\right)\left(x^2+3x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+4=0\\x^2+3x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\\x\notin R\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{-4;1\right\}\)
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Rightarrow\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]-24=0\)
\(\Rightarrow\left(x^2+3x\right)\left(x^2+2x+x+2\right)-24=0\)
\(\Rightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
Đặt \(x^2+3x=t\Rightarrow x^2+3x+2=t+2\)
\(\Rightarrow t.\left(t+2\right)-24=0\)
\(\Rightarrow t^2+2t-24=0\)
\(\Rightarrow t^2-4t+6t-24=0\)
\(\Rightarrow t.\left(t-4\right)+6.\left(t-4\right)=0\)
\(\Rightarrow\left(t-4\right).\left(t+6\right)=0\)(1)
Vì \(x^2+3x=t\) nên
\(\left(1\right)=\left(x^2+3x-4\right).\left(x^2+3x+6\right)=0\)
\(\Rightarrow\left(x^2-x+4x-4\right).\left(x^2+3x+6\right)=0\)
\(\Rightarrow\left(x-1\right).\left(x+4\right)\left(x^2+3x+6\right)=0\)
Ta có:
\(x^2+3x+6=x^2+1,5x+1,5x+2,25+3,75\)
\(=\left(x+1,5\right)^2+3,75\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+1,5\right)^2\ge0\Rightarrow\left(x+1,5\right)^2+3,75\ge3,75>0\)
\(\Rightarrow\left(x-1\right).\left(x+4\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vậy......
Chúc bạn học tốt!!!
Chắc là gpt \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
Đặt \(t=x^2+3x\) thì ta có:
\(\Leftrightarrow t\left(t+2\right)-24=0\)\(\Leftrightarrow t^2+2t-24=0\)
\(\Leftrightarrow\left(t-4\right)\left(t+6\right)=0\)\(\Rightarrow\orbr{\begin{cases}t=4\\t=-6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2+3x=4\\x^2+3x=-6\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)
cấy pt dạng ni lớp 8 học rồi mà :v
chỉ là thêm công thức nghiệm vào thôi ._.
1. ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) + 16 = 0
<=> [ ( x + 2 )( x + 8 ) ][ ( x + 4 )( x + 6 ) ] + 16 = 0
<=> ( x2 + 10x + 16 )( x2 + 10x + 24 ) + 16 = 0
Đặt t = x2 + 10x + 16
pt <=> t( t + 8 ) + 16 = 0
<=> t2 + 8t + 16 = 0
<=> ( t + 4 )2 = 0
<=> ( x2 + 10x + 16 + 4 )2 = 0
<=> ( x2 + 10x + 20 )2 = 0
=> x2 + 10x + 20 = 0
Δ' = b'2 - ac = 25 - 20 = 5
Δ' > 0 nên phương trình có hai nghiệm phân biệt
\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-5+\sqrt{5}\)
\(x_2=\frac{-b'-\sqrt{\text{Δ}'}}{a}=-5-\sqrt{5}\)
Vậy ...
2. ( x + 1 )( x + 2 )( x + 3 )( x + 4 ) - 24 = 0
<=> [ ( x + 1 )( x + 4 ) ][ ( x + 2 )( x + 3 ) ] - 24 = 0
<=> ( x2 + 5x + 4 )( x2 + 5x + 6 ) - 24 = 0
Đặt t = x2 + 5x + 4
pt <=> t( t + 2 ) - 24 = 0
<=> t2 + 2t - 24 = 0
<=> ( t - 4 )( t + 6 ) = 0
<=> ( x2 + 5x + 4 - 4 )( x2 + 5x + 4 + 6 ) = 0
<=> x( x + 5 )( x2 + 5x + 10 ) = 0
Vì x2 + 5x + 10 có Δ = -15 < 0 nên vô nghiệm
=> x = 0 hoặc x = -5
Vậy ...
3. ( x - 1 )( x - 3 )( x - 5 )( x - 7 ) - 20 = 0
<=> [ ( x - 1 )( x - 7 ) ][ ( x - 3 )( x - 5 ) ] - 20 = 0
<=> ( x2 - 8x + 7 )( x2 - 8x + 15 ) - 20 = 0
Đặt t = x2 - 8x + 7
pt <=> t( t + 8 ) - 20 = 0
<=> t2 + 8t - 20 = 0
<=> ( t - 2 )( t + 10 ) = 0
<=> ( x2 - 8x + 7 - 2 )( x2 - 7x + 8 + 10 ) = 0
<=> ( x2 - 8x + 5 )( x2 - 7x + 18 ) = 0
<=> \(\orbr{\begin{cases}x^2-8x+5=0\\x^2-7x+18=0\end{cases}}\)
+) x2 - 8x + 5 = 0
Δ' = b'2 - ac = 16 - 5 = 11
Δ' > 0 nên có hai nghiệm phân biệt
\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-4+\sqrt{11}\)
\(x_2=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-4-\sqrt{11}\)
+) x2 - 7x + 18 = 0
Δ = b2 - 4ac = 49 - 72 = -23 < 0 => vô nghiệm
Vậy ...
nhóm đầu với cuối, 2 cuối giữa với nhau
\(\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)-24=0
<=>(x^2 -5x+4) (x^2-5x+6) - 24=0
Đặt t=x^2-5x+5
ta có: (t-1)(t+1)-24=0
<=> t^2-1-24=0
<=> t^2=25
<=> t = \(\pm\)5
*Với t = 5=>x^2-5x+5=5 <=> x^2 - 5x =0 <=> x(x-5) =0 <=> x = 0 hoặc x = 5
*Với x = -5 => x^2-5x+5=-5 <=> x^2 - 5x +10 =0 => pt vô nghiệm vì x^2-5x+10 = \(\left(x-\frac{5}{2}\right)^2+\frac{15}{4}>0\)
Vậy pt có 2 nghiệm x=0 hoặc x = 5
(x-1)(x-2)(x-3)(x-4) - 24
\(=\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]-24\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)-24\)
Đặt \(x^2-5x+5=a\)
Ta có
\(\left(x^2-5x+4\right)\left(x^2-5x+6\right)-24=\left(a-1\right)\left(a+1\right)-24\)
\(=a^2-1-24=a^2-25=\left(a-5\right)\left(a+5\right)\)
\(=\left(x^2-5x\right) \left(x^2-5x+10\right)=x\left(x-5\right)\left(x^2-5x+10\right)\)
\(\left(x-1\right)\left(x-2\right)\left(x+3\right)\left(x+4\right)=24\)\(\left(đkxđ:x\ne1;2;-3;-4\right)\)
\(< =>\left(x^2+2x-8\right)\left(x^2+2x-3\right)=24\)
Đặt \(x^2+2x=u\)thì phương trình trở thành :
\(\left(u-8\right)\left(u-3\right)=24\)
\(< =>u^2-11u=0\)
\(< =>u\left(u-11\right)=0\)
\(< =>\orbr{\begin{cases}u=0\\u=11\end{cases}}\)
Với \(u=0\)thì \(x^2+2x=0\)\(< =>\orbr{\begin{cases}x=0\\x=-2\end{cases}\left(tmđkxđ\right)}\)
Với \(u=11\)thì \(x^2+2x-11=0< =>\orbr{\begin{cases}-1-2\sqrt{3}\\-1+2\sqrt{3}\end{cases}}\left(tmđkxđ\right)\)(giải delta)
Vậy tập nghiệm của phương trình trên là \(\left\{0;-2;-1-2\sqrt{3};-1+2\sqrt{3}\right\}\)
x(x+1)(x+2)(x+3)=24
=>
x = 1 nhé