
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a. ( x + 3 )( x - 3 ) = 16
⇔x2-9=16
⇔x2-16-9=0
⇔x2-25=0
⇔(x-5)(x+5)=0
⇔\(\left[{}\begin{matrix}x+5=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=5\end{matrix}\right.\)

a) \(\dfrac{x^2-1}{120}+\dfrac{x^2-2}{119}+\dfrac{x^2-3}{118}=3\)
\(=\dfrac{x^2-1}{120}-1+\dfrac{x^2-2}{119}-1+\dfrac{x^2-3}{118}-1=0\)\(=\dfrac{x^2-121}{120}+\dfrac{x^2-121}{119}+\dfrac{x^2-121}{118}=0\)
\(=\left(x^2-121\right).\left(\dfrac{1}{120}+\dfrac{1}{119}+\dfrac{1}{118}\right)=0\)
\(=\left(x+11\right)\left(x-11\right)\left(\dfrac{1}{120}+\dfrac{1}{119}+\dfrac{1}{118}\right)=0\)
⇒\(\left[{}\begin{matrix}x+11=0\\x-11=0\end{matrix}\right.\)⇒\(\left[{}\begin{matrix}x=-11\\x=11\end{matrix}\right.\)

2x + 2x+1 + 2x+2 + 2x+3 = 120
=> 2x ( 1 + 2 + 22 + 23) = 120
=> 2x . 15 = 120
=> 2x = 8 = 23
=> x = 3
\(2^x+2^x\cdot2^1+2^x\cdot2^2+2^x\cdot2^3=120\)
\(2^x\cdot\left(1+2+4+8\right)=120\)
\(2^x\cdot15=120\)
\(2^x=120:15\)
\(2^x=8\)
\(2^x=2^3\)
\(=>x=3\)


c) \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)
\(\Leftrightarrow\)\(\left(x^2+6x+5\right)\left(x^2+6x+8\right)-40=0\)
Đặt \(x^2+6x+5=t\) ta có:
\(t\left(t+3\right)-40=0\)
\(\Leftrightarrow\)\(t^2+3t-40=0\)
\(\Leftrightarrow\)\(\left(t-5\right)\left(t+8\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}t-5=0\\t+8=0\end{cases}}\)
Thay trở lại ta có: \(\orbr{\begin{cases}x^2+6x=0\\x^2+6x+13=0\end{cases}}\)
(*) \(x^2+6x=0\)
\(\Leftrightarrow\)\(x\left(x+6\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+6=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)
(*) \(x^2+6x+13=0\)
\(\Leftrightarrow\)\(\left(x+3\right)^2+4=0\) (vô lý)
Vậy......
\(\Leftrightarrow x\left(x+3\right)\left(x+1\right)\left(x+2\right)-120=0\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-120=0\)
Đặt \(x^2+3x=t\)
\(t\left(t+2\right)-120=0\)
\(\Leftrightarrow t^2+2t-120=0\Rightarrow\left[{}\begin{matrix}t=10\\t=-12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x-10=0\\x^2+3x+12=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)