K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2021

\(x^2-4x-320=0\)

\(\Leftrightarrow x^2-20x+16x-320=0\)

\(\Leftrightarrow x\cdot\left(x-20\right)+16\left(x-20\right)=0\)

\(\Leftrightarrow\left(x-20\right)\left(x+16\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-20=0\\x+16=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=20\\x=-16\end{matrix}\right.\)

24 tháng 6 2017

a) \(x^2+x+2=\left(x^2+x+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)đúng \(\forall x\in R\)

b) \(x^2-4x+10=\left(x^2-4x+4\right)+6=\left(x-2\right)^2+6\ge6>0\)đúng \(\forall x\in R\)

c) \(x\left(x-4\right)+10=x^2-4x+10\)(giải như câu b)

d) \(x\left(2-x\right)-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3< 0\)đúng \(\forall x\in R\)

e) \(x^2-5x+2017=\left(x^2-5x+\frac{25}{4}\right)+\frac{8043}{4}=\left(x-\frac{5}{2}\right)^2+\frac{8043}{4}\ge\frac{8043}{4}>0\)đúng \(\forall x\in R\)

12 tháng 4 2018

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

6 tháng 10 2017

* Ta có: \(A\left(x\right)=x^2-4x+5=\left(x^2-2\cdot x\cdot2+2^2\right)-2^2+5=\left(x-2\right)^2+1\ge1>0\)

Vậy \(A\left(x\right)=x^2-4x+5>0\)

b. \(B\left(x\right)=x^2+x+1=\left[x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\left(\dfrac{1}{2}\right)^2+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

Vậy \(B\left(x\right)=x^2+x+1>0\)

c. \(C\left(x\right)=8x-x^2-17=-x^2+8x-17=-\left(x^2-8x\right)-17=-\left(x^2-2\cdot x\cdot4+4^2\right)+4^2-17=-\left(x-4\right)^2-1\le-1< 0\)

Vậy \(C\left(x\right)=8x-x^2-17< 0\)

a: =>x(x+4)>=0

=>x>=0 hoặc x<=-4

b:=>x+3>0

hay x>-3

c: =>(x-1)(x+1)<0

=>-1<x<1

d: \(x^2+1>=1>0\forall x\)

nên \(x\in R\)

e: =>(2x-3)(2x+3)>=0

=>x>=3/2 hoặc x<=-3/2

16 tháng 7 2021

| 2-4x | = 4x-2

<=> \(\orbr{\begin{cases}\left|2-4x\right|=-2+4x=4x-2\\\left|2-4x\right|=2-4x=4x-2\end{cases}}\)

<=>\(\orbr{\begin{cases}-2+4x=4x-2\\2-4x=4x-2\end{cases}}\)

<=>\(\orbr{\begin{cases}-2+4x-4x+2=0\\2-4x-4x+2=0\end{cases}}\)

<=>\(\orbr{\begin{cases}0=0\\-8x+4=0\end{cases}}\)

<=> x=\(\frac{-4}{-8}=\frac{1}{2}\)

=> \(S=\left\{\frac{1}{2};\infty\right\}\)

2x-7> 3(x-1)

<=>2x-7>3x-3

<=>2x-3x>-3+7

<=>-x>4

<=>x<4

=>S={x/x<4}

1-2x<4(3x-2)

<=>1-2x<12x-8

<=>-2x-12x<-8-1

<=>-14x<-9

<=>x>\(\frac{9}{14}\)

=>S={\(\frac{9}{14}\)}

-3x+2|-4 -x|> 0

<=>\(\orbr{\begin{cases}-3x+2+4+x>0\\-3x+2-4x-x>0\end{cases}}\)

<=>\(\orbr{\begin{cases}-2x+6>0\\-8x+2>0\end{cases}}\)

<=>\(\orbr{\begin{cases}-2x>-6\\-8x>-2\end{cases}}\)

<=>\(\orbr{\begin{cases}x< 3\\x< \frac{1}{4}\end{cases}}\)

=>S={x/x<3;x/x<\(\frac{1}{4}\)}

4x-1|x-2|< 0

<=>\(\orbr{\begin{cases}4x-1-x+2< 0\\4x-1+x-2< 0\end{cases}}\)

<=>\(\orbr{\begin{cases}3x+1< 0\\3x-3< 0\end{cases}}\)

<=>\(\orbr{\begin{cases}3x< -1\\3x< 3\end{cases}}\)

<=>\(\orbr{\begin{cases}x< \frac{-1}{3}\\x< 1\end{cases}}\)

=>S={x/x<\(\frac{-1}{3}\);x/x<1}

13 tháng 6 2018

1. 4x2 + 4x + 2 = (4x2 + 4x + 1) + 1 = (2x + 1)2 + 1

Có: (2x+1)2 ≥ 0 ∀x => (2x+1)2 + 1 ≥ 1 > 0 (đpcm)

3. -x2 + 4x - 5 = -(x2 - 4x + 4) - 1 = -(x - 2)^2 - 1

Có: -(x-2)^2 ≤ 0 => -(x-2)^2 -1 ≤ - 1 < 0 (đpcm)

7. (x+2)(x-5) + 15 = x2 - 3x + 5 = (x2 - 2.x.\(\dfrac{3}{2}\)+ \(\dfrac{9}{4}\)) + \(\dfrac{11}{4}\)

= ( x - \(\dfrac{3}{2}\))^2 + \(\dfrac{11}{4}\) \(\ge\dfrac{11}{4}>0\left(đpcm\right)\)