K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{96}{\left(x-4\right)\left(x+4\right)}+\dfrac{7+x}{4-x}=\dfrac{2x-1}{x+4}-3\)

\(\Leftrightarrow\dfrac{96}{\left(x-4\right)\left(x+4\right)}-\dfrac{\left(x+7\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{\left(2x-1\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}-\dfrac{3\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}\)

Suy ra: \(96-x^2-11x-28=2x^2-9x+4-3\left(x^2-16\right)\)

\(\Leftrightarrow-x^2-11x+68=2x^2-9x+4-3x^2+48\)

\(\Leftrightarrow-x^2-11x+68=-x^2-9x+52\)

=>-11x+68=-9x+52

=>-2x=-16

hay x=8(nhận)

b: \(\dfrac{2}{x-1}+\dfrac{3}{x-2}=\dfrac{3}{x-3}\)

\(\Leftrightarrow2\left(x-2\right)\left(x-3\right)+3\left(x-1\right)\left(x-3\right)=3\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow2\left(x^2-5x+6\right)+3\left(x^2-4x+3\right)=3\left(x^2-3x+2\right)\)

\(\Leftrightarrow2x^2-10x+12+3x^2-12x+9=3x^2-9x+6\)

\(\Leftrightarrow5x^2-22x+21-3x^2+9x-6=0\)

\(\Leftrightarrow2x^2-13x+15=0\)

\(\Leftrightarrow2x^2-10x-3x+15=0\)

=>(x-5)(2x-3)=0

=>x=5(nhận) hoặc x=3/2(nhận)

18 tháng 11 2023

a: ĐKXĐ: \(x\notin\left\{4;-4\right\}\)

\(\dfrac{7}{4x+16}=\dfrac{7}{4\left(x+4\right)}=\dfrac{7\left(x-4\right)}{4\left(x+4\right)\left(x-4\right)}\)

\(\dfrac{11}{x^2-16}=\dfrac{11\cdot4}{4\left(x^2-16\right)}=\dfrac{44}{4\left(x-4\right)\left(x+4\right)}\)

b: \(\dfrac{6}{x\left(x+3\right)^2};\dfrac{x-3}{2x\left(x+3\right)^2}\)

ĐKXĐ: \(x\notin\left\{0;-3\right\}\)

\(\dfrac{6}{x\left(x+3\right)^2}=\dfrac{6\cdot2}{2x\left(x+3\right)^2}=\dfrac{12}{2x\left(x+3\right)^2}\)

\(\dfrac{x-3}{2x\left(x+3\right)^2}=\dfrac{x-3}{2x\left(x+3\right)^2}\)

c: \(\dfrac{-6}{1-x};\dfrac{3x}{x^2+x+1};\dfrac{x^2-3x+5}{x^3-1}\)

ĐKXĐ: \(x\ne1\)

\(-\dfrac{6}{1-x}=\dfrac{6}{x-1}=\dfrac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{6x^2+6x+6}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\dfrac{3x}{x^2+x+1}=\dfrac{3x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\dfrac{x^2-3x+5}{x^3-1}=\dfrac{x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)

d: \(\dfrac{17}{5x};\dfrac{24}{x-2y};\dfrac{x-y}{8y^2-2x^2}\)

ĐKXĐ: \(x\ne0;x\ne\pm2y\)

\(\dfrac{17}{5x}=\dfrac{17\cdot2\left(x-2y\right)\left(x+2y\right)}{5x\cdot2\cdot\left(x-2y\right)\left(x+2y\right)}=\dfrac{34\left(x^2-4y^2\right)}{10x\left(x-2y\right)\left(x+2y\right)}\)

\(\dfrac{24}{x-2y}=\dfrac{24\cdot10x\left(x+2y\right)}{10x\left(x-2y\right)\left(x+2y\right)}=\dfrac{240x\left(x+2y\right)}{10x\left(x-2y\right)\left(x+2y\right)}\)

\(\dfrac{x-y}{8y^2-2x^2}=\dfrac{-\left(x-y\right)}{2x^2-8y^2}=\dfrac{-\left(x-y\right)}{2\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{-5x\left(x-y\right)}{10x\left(x-2y\right)\left(x+2y\right)}=\dfrac{-5x^2+5xy}{10x\left(x-2y\right)\left(x+2y\right)}\)

18 tháng 7 2017

\(A=4.\left(3^2+1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=\frac{3^{32}-1}{2}< 3^{32}-1=B\)

Vậy \(A< B\)

10 tháng 7 2019

ai giupws với