Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\dfrac{1}{\sqrt{x+1}+\sqrt{x+2}}=\dfrac{\sqrt{x+1}-\sqrt{x+2}}{\left(\sqrt{x+1}+\sqrt{x+2}\right)\left(\sqrt{x+1}-\sqrt{x+2}\right)}=\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}=-\sqrt{x+1}+\sqrt{x+2}\)
Tương tự :
\(\dfrac{1}{\sqrt{x+2}+\sqrt{x+3}}=-\sqrt{x+2}+\sqrt{x+3}\)
\(\dfrac{1}{\sqrt{x+3}+\sqrt{x+4}}=-\sqrt{x+3}+\sqrt{x+4}\)
....
\(\dfrac{1}{\sqrt{x+2019}+\sqrt{x+2010}}=-\sqrt{x+2019}+\sqrt{x+2010}\)
Từ những ý trên , pt trở thành :
\(-\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+2}+\sqrt{x+3}-\sqrt{x+3}+\sqrt{x+4}-.....-\sqrt{x+2019}+\sqrt{x+2020}=11\)
\(\Leftrightarrow\sqrt{x+2020}-\sqrt{x+1}=11\)
\(\Leftrightarrow x+2020-2\sqrt{\left(x+2020\right)\left(x+1\right)}+x+1=121\)
\(\Leftrightarrow2x+1900=2\sqrt{\left(x+1\right)\left(x+2020\right)}\)
\(\Leftrightarrow x+950=\sqrt{\left(x+1\right)\left(x+2020\right)}\)
\(\Leftrightarrow x^2+1900x+902500=x^2+2021x+2020\)
\(\Leftrightarrow121x-900480=0\)
\(\Leftrightarrow x=\dfrac{900480}{121}\)
1) \(\Leftrightarrow\sqrt{\left(x+5\right)^2}=4\)
\(\Leftrightarrow\left|x+5\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=4\\x+5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-9\end{matrix}\right.\)
2) \(ĐK:x\ge2\)
\(\Leftrightarrow\sqrt{x-2}=2\)
\(\Leftrightarrow x-2=4\Leftrightarrow x=6\left(tm\right)\)
3) \(\Leftrightarrow\left(x^2-x+4\right)-\sqrt{x^2-x+4}+\dfrac{1}{4}=\dfrac{9}{4}\)
\(\Leftrightarrow\left(\sqrt{x^2-x+4}-\dfrac{1}{2}\right)^2=\dfrac{9}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}-\dfrac{1}{2}=\dfrac{3}{2}\\\sqrt{x^2-x+4}-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}=2\\\sqrt{x^2-x+4}=-1\left(VLý\right)\end{matrix}\right.\)
\(\Leftrightarrow x^2-x+4=4\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
4) \(ĐK:x\ge0\)
\(\Leftrightarrow3\sqrt{x}-3=\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}=\dfrac{5}{2}\Leftrightarrow x=\dfrac{25}{4}\left(tm\right)\)
\(\sqrt{x+1+\sqrt{x+\dfrac{3}{4}}}+x=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{x+1+\dfrac{1}{2}\sqrt{4x+3}}+x=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{\dfrac{1}{4}\left(4x+3\right)+2.\dfrac{1}{2}.\dfrac{1}{2}\sqrt{4x+3}+\dfrac{1}{4}}+x=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{\left(\dfrac{1}{2}\sqrt{4x+3}+\dfrac{1}{2}\right)^2}+x=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{4x+3}+\dfrac{1}{2}+x=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{4x+3}=-2x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\4x+3=4x^2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\\left(2x-3\right)\left(2x+1\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x=-\dfrac{1}{2}\)
Vậy...
a/ ĐKXĐ: \(x\ge-1\)
\(\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-6\sqrt{x+1}+9}=2\sqrt{x+1-2\sqrt{x+1}+1}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)
\(\Leftrightarrow\sqrt{x+1}+1+\left|\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)
- Nếu \(\sqrt{x+1}\ge3\Leftrightarrow x\ge8\) pt trở thành:
\(\sqrt{x+1}+1+\sqrt{x+1}-3=2\sqrt{x+1}-2\)
\(\Leftrightarrow-2=-2\) (đúng)
- Nếu \(\sqrt{x+1}-1\le0\Leftrightarrow-1\le x\le0\) pt trở thành:
\(\sqrt{x+1}+1+3-\sqrt{x+1}=2-2\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{x+1}=-1< 0\) (vô nghiệm)
- Nếu \(0< x< 8\) pt trở thành:
\(\sqrt{x+1}+1+3-\sqrt{x+1}=2\sqrt{x+1}-2\)
\(\Leftrightarrow\sqrt{x+1}=3\Rightarrow x=8\left(l\right)\)
Vậy nghiệm của pt đã cho là \(x\ge8\)
b/ ĐKXĐ: \(x\ge\dfrac{-1}{4}\)
Đặt \(\sqrt{x+\dfrac{1}{4}}=t\ge0\Rightarrow x=t^2-\dfrac{1}{4}\) pt trở thành:
\(t^2-\dfrac{1}{4}+\sqrt{t^2+t+\dfrac{1}{4}}=2\)
\(\Leftrightarrow t^2-\dfrac{1}{4}+\sqrt{\left(t+\dfrac{1}{2}\right)^2}=2\)
\(\Leftrightarrow t^2+t+\dfrac{1}{4}-2=0\)
\(\Leftrightarrow4t^2+4t-7=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+2\sqrt{2}}{2}\\t=\dfrac{-1-2\sqrt{2}}{2}< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=t^2-\dfrac{1}{4}=\left(\dfrac{-1+2\sqrt{2}}{2}\right)^2-\dfrac{1}{4}=2-\sqrt{2}\)
Vậy pt có nghiệm duy nhất \(x=2-\sqrt{2}\)
mình nhầm mẫu nhé :v mình làm lại
\(=\left(\dfrac{x-\sqrt{x}-2x+4\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\right):\dfrac{2-\sqrt{x}}{x-1}\)
\(=\dfrac{-x+3\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{2-\sqrt{x}}=\dfrac{\left(2-\sqrt{x}\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(2-\sqrt{x}\right)\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
a.
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x\ge-1\)
\(x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)
\(\Leftrightarrow x=3\)
c.
ĐKXĐ: \(-2\le x\le\dfrac{4}{5}\)
\(VT=2x+3\sqrt{4-5x}+1.\sqrt{x+2}\)
\(VT\le2x+\dfrac{1}{2}\left(9+4-5x\right)+\dfrac{1}{2}\left(1+x+2\right)=8\)
Dấu "=" xảy ra khi và chỉ khi \(x=-1\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-2}=a\left(a>0\right)\\\sqrt{y-1}=b\left(b>0\right)\end{matrix}\right.\)
\(\Rightarrow\dfrac{36}{a}+\dfrac{4}{b}=28-4a-b\)
\(\Leftrightarrow\left(\dfrac{36}{a}+4a\right)+\left(\dfrac{4}{b}+b\right)=28\)
\(VT\ge2\sqrt{\dfrac{36}{a}\times4a}+2\sqrt{\dfrac{4}{b}\times b}=28\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{36}{a}=4a\\\dfrac{4}{b}=b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\) \(\left(a,b>0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2}=3\\\sqrt{y-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=5\end{matrix}\right.\) (n)
Vậy . . . >3<
\(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\) (ĐK: \(x\ge0,x\ne1\))
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)
\(\Leftrightarrow x-\sqrt{x}=x-2\sqrt{x}+\sqrt{x}-2\)
\(\Leftrightarrow x-\sqrt{x}=x-\sqrt{x}-2\)
\(\Leftrightarrow x-x=\sqrt{x}-\sqrt{x}-2\)
\(\Leftrightarrow0=-2\) (vô lý)
⇒ Phương trình vô nghiệm
\(đk:x\ge0;x\ne1\)
\(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\\ \Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)\\ \Rightarrow x-2\sqrt{x}+\sqrt{x}-2=x-\sqrt{x}\\ \Rightarrow-\sqrt{x}-2+\sqrt{x}=0\\ \Rightarrow-2=0\left(voli\right)\)
Vậy phương trình vô nghiệm
\(pt\Rightarrow\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2-x\\ \Leftrightarrow x+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=\left(2-x\right)^2\\ \Leftrightarrow x+\dfrac{1}{4}+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{4}=\left(x-2\right)^2\\ \Leftrightarrow\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=\left(x-2\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=x-2\left(1\right)\\\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2-x\left(2\right)\end{matrix}\right.\)
Tới đây giải \(pt\left(1\right)\left(2\right)\), sau đó thế lại vào cái pt ban đầu, từ đó nhận hoặc loại nghiệm tìm được
( Không giải được 2 cái kia thì cmt nhắc nha )
ĐKXĐ: \(x\ge-\dfrac{1}{4}\)
Ta có: \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)
\(\Leftrightarrow x+\sqrt{x+\dfrac{1}{4}+2\cdot\sqrt{x+\dfrac{1}{4}}\cdot\dfrac{1}{2}+\dfrac{1}{4}}=2\)
\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=2\)
\(\Leftrightarrow x+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2\)
\(\Leftrightarrow x+\dfrac{1}{4}+2\cdot\sqrt{x+\dfrac{1}{4}}\cdot\dfrac{1}{2}+\dfrac{1}{4}=2\)
\(\Leftrightarrow\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=-2\\\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+\dfrac{1}{4}}=-\dfrac{5}{2}\left(loại\right)\\\sqrt{x+\dfrac{1}{4}}=\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow x+\dfrac{1}{4}=\dfrac{9}{4}\)
hay x=2(thỏa ĐK)
Vậy: x=2