\(x=\sqrt{\dfrac{1}{2\sqrt{3}-2}-\dfrac{3}{2\left(\sqrt{3}+1\right)}}\)

Tính A =...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a: ĐKXĐ: 2x+3>=0 và x-3>0

=>x>3

b: ĐKXĐ:(2x+3)/(x-3)>=0

=>x>3 hoặc x<-3/2

c: ĐKXĐ: x+2<0

hay x<-2

d: ĐKXĐ: -x>=0 và x+3<>0

=>x<=0 và x<>-3

4 tháng 12 2017

Đặt VT là T

Áp dụng AM-GM cho 3 số dương, ta có:

\(\dfrac{1}{\left(x-1\right)^3}+1+1+\left(\dfrac{x-1}{y}\right)^3+1+1+\dfrac{1}{y^3}+1+1\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}\right)\)

\(T\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}-2\right)=3\left(\dfrac{3-2x}{x-1}+\dfrac{x}{y}\right)\)(đpcm)

4 tháng 12 2017

\(P=\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{2}{x+2\sqrt{x}}+\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}\)

\(=\dfrac{\sqrt{x}\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}+\dfrac{2\left(\sqrt{x}-1\right)}{.....}+\dfrac{x+2}{....}\)

\(=\dfrac{\sqrt{x^3}+2x+2\sqrt{x}-2+x+2}{.....}=\dfrac{\sqrt{x^3}+3x+2\sqrt{x}}{....}\)

\(=\dfrac{\sqrt{x}\left(x+3\sqrt{x}+2\right)}{....}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{....}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

P/S: Chú ý điều kiện khi rút gọn, tự tìm.

10 tháng 6 2017

Bài 1:

\(\left(\dfrac{x}{x^2-49}-\dfrac{x-7}{x^2+7x}\right):\dfrac{2x-7}{x^2+7x}+\dfrac{x}{7-x}\)

\(=\left(\dfrac{x}{\left(x-7\right)\left(x+7\right)}-\dfrac{x-7}{x\cdot\left(x+7\right)}\right)\cdot\dfrac{x^2+7x}{2x-7}+\dfrac{x}{-\left(x-7\right)}\)

\(=\dfrac{x^2-\left(x-7\right)^2}{x\cdot\left(x-7\right)\left(x+7\right)}\cdot\dfrac{x\cdot\left(x+7\right)}{2x-7}-\dfrac{x}{x-7}\)

\(=\dfrac{\left(x-\left(x-7\right)\right)\cdot\left(x+x-7\right)}{x-7}\cdot\dfrac{1}{2x-7}-\dfrac{x}{x-7}\)

\(=\dfrac{\left(x-x+7\right)\cdot\left(2x-7\right)}{x-7}\cdot\dfrac{1}{2x-7}-\dfrac{x}{x-7}\)

\(=\dfrac{7}{x-7}-\dfrac{x}{x-7}\)

\(=\dfrac{7-x}{x-7}\)

\(=\dfrac{-\left(x-7\right)}{x-7}\)

\(=-1\)

10 tháng 6 2017

A = \(\left(\dfrac{x}{x^2-49}-\dfrac{x-7}{x^2+7x}\right):\dfrac{2x-7}{x^2+7x}+\dfrac{x}{7-x}\)

A = \(\left(\dfrac{x}{\left(x+7\right)\left(x-7\right)}-\dfrac{x-7}{x\left(x+7\right)}\right):\dfrac{2x-7}{x\left(x+7\right)}+\dfrac{x}{7-x}\)

A = \(\left(\dfrac{x^2-\left(x-7\right)^2}{\left(x+7\right)\left(x-7\right)x}\right):\dfrac{2x-7}{x\left(x+7\right)}-\dfrac{x}{x-7}\)

A = \(\left(\dfrac{x^2-\left(x^2-14x+49\right)}{\left(x+7\right)\left(x-7\right)x}\right):\dfrac{\left(2x-7\right)\left(x-7\right)-\left(x^3+7x^2\right)}{\left(x+7\right)\left(x-7\right)x}\)

A = \(\dfrac{14x-49}{\left(x+7\right)\left(x-7\right)x}:\dfrac{-x^3-5x^2-21x+49}{\left(x+7\right)\left(x-7\right)x}\)

A = \(\dfrac{14x-49}{\left(x+7\right)\left(x-7\right)x}.\dfrac{\left(x+7\right)\left(x-7\right)x}{-x^3-5x^2-21x+49}\)

A = \(\dfrac{14x-49}{-x^3-5x^2-21x+49}\)