K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

a) \(A_4=\left(x^2-3x+5\right)^2+7x\cdot\left(x^2-3x+5\right)+12x^2\)

\(=\left(x^2-3x+5\right)^2+4x\cdot\left(x^2-3x+5\right)+3x\left(x^2-3x+5\right)+12x^2\)

\(=\left(x^2-3x+5\right)\left(x^2-3x+5+4x\right)+3x\left(x^2-3x+5+4x\right)\)

\(=\left[\left(x^2-3x+5\right)+3x\right]\cdot\left(x^2-3x+5+4x\right)\)

\(=\left(x^2-3x+5+3x\right)\left(x^2+x+5\right)\)

\(=\left(x^2+5\right)\left(x^2+x+5\right)\)

23 tháng 6 2017

\(A_5=2\left(x^2+5x-2\right)^2-7\left(x^2+5x-2\right)\left(x^3+3\right)+5\left(x^2+3\right)^2\)

Đặt \(x^2+5x-2=a;x^3+3=b\),Ta có:

\(2a^2-7ab+5b^2=2a^2-5ab-2ab+5b^2=a\left(2a-5b\right)-b\left(2a-5b\right)=\left(2a+5b\right)\left(a-b\right)\)

Thay \(x^2+5x-2=a;x^3+3=b\),ta có:

.......................

bn làm nốt nhé

23 tháng 6 2017

\(A_3=\left(x^2+4x+10\right)^2-7\left(x^2+4x+11\right)+7\)

Đặt \(t=x^2+4x+10\)

\(A_3=t^2-7\left(t^2+1\right)+7\)

\(=-6t^2\)

Thay vào : \(-6\left(x^2+4x+10\right)^2\)

23 tháng 6 2017

2 , \(A_1=\left(t^2+3x\right)^2-2\left(x^2+3x\right)-8\)

Đặt \(t=x^2-3x\)

\(A_1=t^2-2x-8=\left(t-4\right)\left(t+2\right)\)

\(=\left(x^2+3x+2\right)\left(x^2+3x-4\right)\)

17 tháng 10 2018

ko có thánh nhân nào rảnh làm hết đâu limdim

17 tháng 10 2018

giúp hộ 1 câu đi mà T^T

b: \(=\left(x+3+y\right)\left(x+3-y\right)\)

c: \(=x\left(9x^2-6xy+y^2\right)=x\left(3x-y\right)^2\)

d: \(=\left(xy+6\right)\left(x^2y^2-6xy+36\right)\)

e: \(=\left(x+y-3\right)\left(x^2+2xy+y^2+3x+3y+9\right)\)

18 tháng 10 2018

a)\(x^3-x^2-x+1=\left(x^3-x\right)-\left(x^2-1\right)=x\left(x^2-1\right)-\left(x^2-1\right)=\left(x-1\right)^2.\left(x+1\right)\)

b)\(x^3+x^2-4x-4=x^2\left(x+1\right)-4\left(x+1\right)=\left(x^2-4\right)\left(x+1\right)=\left(x+2\right)\left(x-2\right)\left(x+1\right)\)

c)\(a^5+27a^2=a^2\left(a^3+27\right)=a^2\left(a+3\right)\left(a^2-3a+9\right)\)

d)\(x^4-8x=x\left(x^3-8\right)=x\left(x-2\right)\left(x^2+2x+4\right)\)

e)\(x^4-4x^3+4x^2=x^2\left(x^2-4x+4\right)=x^2\left(x-2\right)^2\)

f)\(2x^4-32=2\left(x^4-16\right)=2\left(x^2+4\right)\left(x^2-4\right)=2\left(x^2+4\right)\left(x+2\right)\left(x-2\right)\)

18 tháng 10 2018

a) \(x^3-x^2-x+1\)

\(=x^2\left(x-1\right)-\left(x-1\right)\)

\(=\left(x^2-1\right)\left(x-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x-1\right)=\left(x-1\right)^2\left(x+1\right)\)

b) \(x^3+x^2-4x-4\)

\(=x^2\left(x+1\right)-4\left(x+1\right)\)

\(=\left(x^2-4\right)\left(x+1\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x+1\right)\)

c) \(a^5+27a^2=a^2\left(a^3+27\right)\)

\(=a^2\left(a+3\right)\left(a^2-3a+9\right)\)

d) \(x^4-8x=x\left(x^3-8\right)\)

\(=x\left(x-2\right)\left(x^2+2x+4\right)\)

e) \(x^4-4x^3+4x^2\)

\(=\left(x^2\right)^2-2\cdot x^2\cdot2x+\left(2x\right)^2\)

\(=\left(x^2+2x\right)^2\)\(=\left[x\left(x+2\right)\right]^2=x^2\left(x+2\right)^2\)

f) \(2x^4-32=2\left(x^4-16\right)\)

\(=2\left(x^2-4\right)\left(x^2+4\right)\)

\(=2\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\)