K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

Áp dụng BĐT cosi dạng \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\cdot\dfrac{1}{4}\ge\dfrac{4}{a+b}\cdot\dfrac{1}{4}\\ \Leftrightarrow\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

\(\Leftrightarrow\dfrac{a}{2a+b+c}=\dfrac{a}{a+b+a+c}\le\dfrac{a}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\)

Cmtt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b}{a+2b+c}\le\dfrac{b}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{c}{a+b+2c}\le\dfrac{c}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)

Cộng VTV 3 BĐT trên:

\(\Leftrightarrow VT\le\dfrac{1}{4}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\\ \Leftrightarrow VT\le\dfrac{1}{4}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\right)=\dfrac{1}{4}\cdot3=\dfrac{3}{4}\)

Dấu \("="\Leftrightarrow a=b=c\)

28 tháng 10 2021

Cám ơn thầy nhiều lắm ạ!

NV
19 tháng 9 2021

Thực hiện lần lượt BĐT cô-si 3 số cho từng bộ 3 vế trái, ví dụ:

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\ge3\sqrt[3]{\dfrac{1}{a^3b^3c^3}}=\dfrac{3}{abc}\)

Làm tương tự, sau đó cộng vế và quy đồng vế phải là sẽ được BĐT cần chứng minh

NV
19 tháng 9 2021

Hai câu c và d chỉ là BĐT \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\), cách chứng minh \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\) thế nào thì chứng minh c và d như vậy (biến đổi thành tổng của 3 bình phương các hiệu)

Với câu c thì \(x=ab;y=bc;z=ca\), câu d thì \(x=a^2b;y=...\)

19 tháng 9 2021

Nhờ thầy viết cho em vài dòng câu d với ạ, câu d em chưa xử lý được thầy ạ?

22 tháng 2 2022

Em xin phép nhờ  quý thầy cô và các bạn giúp đỡ với ạ!

 

NV
6 tháng 3 2022

Ta có:

\(x^4+y^4\ge\dfrac{1}{2}\left(x^2+y^2\right)^2=\dfrac{1}{2}\left(x^2+y^2\right)\left(x^2+y^2\right)\ge\dfrac{1}{2}.2xy\left(x^2+y^2\right)=xy\left(x^2+y^2\right)\)

Áp dụng:

\(P\le\dfrac{a}{a+bc\left(b^2+c^2\right)}+\dfrac{b}{b+ca\left(c^2+a^2\right)}+\dfrac{c}{c+ab\left(a^2+b^2\right)}\)

\(P\le\dfrac{a^2}{a^2+abc\left(b^2+c^2\right)}+\dfrac{b^2}{b^2+abc\left(c^2+a^2\right)}+\dfrac{c^2}{c^2+abc\left(a^2+b^2\right)}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

7 tháng 3 2022

Em cám ơn thầy đã dành thời gian giúp đỡ ạ!

 

NV
17 tháng 2 2022

Đặt \(P=\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{a+d}+\dfrac{d}{a+b}\)

\(P=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+bd}+\dfrac{c^2}{ac+cd}+\dfrac{d^2}{ad+bd}\)

\(P\ge\dfrac{\left(a+b+c+d\right)^2}{ab+2ac+bc+2bd+cd+ad}=\dfrac{\left(a+c\right)^2+\left(b+d\right)^2+2\left(a+c\right)\left(b+d\right)}{2ac+2bd+ab+bc+cd+ad}\)

\(P\ge\dfrac{4ac+4bd+2ab+2bc+2cd+2ad}{2ac+2bd+ab+bc+cd+ad}=2\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

17 tháng 2 2022

Cám ơn thầy Lâm nhiều lắm ạ!