K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có MN//BC

nên AM/AB=AN/AC

=>AN/4=1,2/3=4/10

hay AN=1,6(cm)

b: BC=5cm

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC
=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\)

Do đó: BD=15/7(cm); CD=20/7(cm)

16 tháng 2 2022

a, \(3x+7x^2+5+2x-7x^2\ge0\Leftrightarrow5x+5\ge0\Leftrightarrow x\ge-1\)

b, \(12x\ge-16\Leftrightarrow x\ge-\dfrac{4}{3}\)

c, \(\dfrac{5x-1-6}{6}-\dfrac{4\left(x+1\right)}{3}\le0\)

\(\Leftrightarrow\dfrac{5x-7-8\left(x+1\right)}{6}\le0\Rightarrow-3x-15\le0\Leftrightarrow x\le-5\)

Đăng 5 -6 câu từng lần ha bạn!

7 tháng 2 2022

\(1,7x-8=4x+7\)

\(\Leftrightarrow7x-8-4x=7\)

\(\Leftrightarrow7x-4x=7+8\)

\(\Leftrightarrow3x=15\)

\(\Rightarrow x=5\)

\(2,3-2x=3\left(x+1\right)-x-2\)

\(\Leftrightarrow3-2x=2x+1\)

\(\Leftrightarrow-2x+3=2x+1\)

\(\Leftrightarrow-2x-2x=1-3\)

\(\Leftrightarrow-4x=-2\)

\(\Rightarrow x=\dfrac{1}{2}\)

\(3,5\left(3x+2\right)=4x+1\)

\(\Leftrightarrow5.3x+5.2=4x+1\)

\(\Leftrightarrow15x+10=4x+1\)

\(\Leftrightarrow15x-4x=1-10\)

\(\Leftrightarrow11x=-9\)

\(\Rightarrow x=\dfrac{-9}{11}\)

4 tháng 3 2022

a.

Ta có: MN//BC (gt)

Áp dụng định lý Ta-lét, ta có:

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

\(\Leftrightarrow\dfrac{1,2}{3}=\dfrac{AN}{4}\)

\(\Leftrightarrow3AN=4,8\)

\(\Leftrightarrow AN=1,6cm\)

b.Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{3^2+4^2}=\sqrt{25}=5cm\)

Áp dụng t/c đường phân giác góc A, ta có:

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{3}{4}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{CD}{4}=\dfrac{BD}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{CD}{4}=\dfrac{BD}{3}=\dfrac{CD+BD}{4+3}=\dfrac{5}{7}\)

\(\Rightarrow CD=\dfrac{5}{7}.4=\dfrac{20}{7}cm\)

\(\Rightarrow BD=\dfrac{5}{7}.3=\dfrac{15}{7}cm\)

a: \(A=\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}-\dfrac{2x^2-2x+50}{2x\left(x-5\right)}\)

\(=\dfrac{x^2-25+2x^2-12x-2x^2+2x-50}{2xx\left(x-5\right)}\)

\(=\dfrac{x^2-10x-75}{2x\left(x-5\right)}\)

b: Ta có: |x-2|=3

nên x-2=3 hoặc x-2=-3

=>x=5(loại) hoặc x=-1(nhận)

Thay x=-1 vào A, ta được:

\(A=\dfrac{\left(-1\right)^2-10\cdot\left(-1\right)-75}{2\cdot\left(-1\right)\cdot\left(-1-5\right)}=\dfrac{1+20-75}{-2\cdot\left(-6\right)}=\dfrac{-54}{12}=\dfrac{-9}{2}\)

3 tháng 5 2022

7B, 8A

 

3 tháng 5 2022

Câu 9:

a. <=> 4x= 12

<=> x=3

S={3}

b. <=> (2x-6).(x+9)=0

<=> 2x-6=0 hoặc x+9=0

<=> x= 3     hoặc x=-9

S={3;-9}

c. <=> 5x=-20

<=> x= -4

S={-4}

d. <=> (2x-6).(3x+9)=0

<=> 2x-6=0 hoặc 3x+9=0

<=> 2x=6   hoặc 3x=-9

<=> x=3     hoặc x= -3

S={3;-3}

e. th1: 2x-3= 6x+5 nếu 2x-3>0 => x>\(\dfrac{3}{2}\)

2x-3=6x+5

<=>2x-6x= 5+3

<=>-4x=8

<=> x= -2 (loại)

th2: 2x-3= -6x+5 nếu 2x-3<0 => x<\(\dfrac{3}{2}\)

2x-3=-6x+5

<=>2x+6x= 5+3

<=>8x=8

<=>x=1 (chọn)

S={1}

f. <=> -12x>6

<=> x< -\(\dfrac{1}{2}\)

S={x/x<-\(\dfrac{1}{2}\)}

g. th1: 2x+3=4x+5 nếu 2x+3>0 => x>\(\dfrac{-3}{2}\)

2x+3=4x+5

2x-4x=5-3

-2x= 2

x= -1 (chọn)

th2: 2x+3=-4x+5 nếu 2x+3<0 => x<\(\dfrac{-3}{2}\)

2x+3=-4x+5

2x+4x= 5-3

6x=2

x= \(\dfrac{1}{3}\)(loại)

S={-1}

h. <=> -2x>-6

<=> x< 3

S={x/x<3}