K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

Hhigh             

sửa đề : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

áp dụng t/c dãy t/s = nhau

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{58}{3+4+5}=\frac{58}{12}=\frac{29}{6}\)

\(\frac{x}{3}=\frac{29}{6}\Rightarrow x=\frac{29}{2}\)

\(\frac{y}{4}=\frac{29}{6}\Rightarrow y=\frac{58}{3}\)

\(\frac{z}{5}=\frac{29}{6}\Rightarrow z=\frac{145}{6}\)

vậy ...

5 tháng 4 2020

chết rồi mình nhìn nhầm đề nhé : phải là :  3+4-5 = 58/2=29

từ đây bạn tìm x;y;z nhé!

17 tháng 10 2021

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)

Áp dụng t/c dtsbn:

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+y^2+z^2}{4+9+16}=\dfrac{116}{29}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=4.4=16\\y^2=4.9=36\\z^2=16.16=16^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=4\\y=6\\z=16\end{matrix}\right.\\\left\{{}\begin{matrix}x=-4\\y=-6\\z=-16\end{matrix}\right.\end{matrix}\right.\)

17 tháng 10 2021

thank bn nha!yeu

27 tháng 9 2021

~ Chúc bạn ho tốt ~ !!!!!!!!!!!!

undefined

27 tháng 9 2021

nhanh vậy 

8 tháng 11 2021

x = 114 : 21 = \(\frac{38}{7}\)

y = 114: 3 = 38

a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)

nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)

Vậy: (x,y,z)=(18;16;20)

b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)

Ta có: \(x^2-y^2=4\)

\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)

\(\Leftrightarrow16k^2=4\)

\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

Trường hợp 1: \(k=\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)

Trường hợp 2: \(k=-\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)

 

3 tháng 7 2021

a)

 

Theo tính chất của dãy tỉ số bằng nhau, ta có : 

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Suy ra : 

\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)

b)

\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)

Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$

Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$

c)

\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)

Suy ra : 

\(2x=y+z+1\Leftrightarrow y+z=2x-1\)

Mặt khác : 

\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)

\(2y=x+z+1=z+\dfrac{3}{2}\)

Mà \(y+z=0\Leftrightarrow z=-y\)

nên suy ra:  \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)

NM
8 tháng 11 2021

1. áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x+2}{3}=\frac{y-7}{5}=\frac{x+y-5}{3+5}=\frac{16}{8}=2\Rightarrow\hept{\begin{cases}x+2=6\\y-7=10\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=17\end{cases}}}\)

2. áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y+2}{2-3}=\frac{-10+7}{-1}=3\Rightarrow\hept{\begin{cases}x+5=6\\y-2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=11\end{cases}}\)

27 tháng 3 2020

Ta có : 3x = 5y = 8z => \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{8}}\)

Đặt \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{8}}=k\)

=> \(\hept{\begin{cases}\frac{x}{\frac{1}{3}}=k\\\frac{y}{\frac{1}{5}}=k\\\frac{z}{\frac{1}{8}}=k\end{cases}}\)

=> \(x=\frac{1}{3}k,y=\frac{1}{5}k,z=\frac{1}{8}k\)

=> \(x+y+z=\frac{1}{3}k+\frac{1}{5}k+\frac{1}{8}k\)

=> \(\frac{79}{120}k=158\)

=> \(k=240\)

Do đó : \(x=\frac{1}{3}k=\frac{1}{3}\cdot240=80\)

\(y=\frac{1}{5}k=\frac{1}{5}\cdot240=48\)

\(z=\frac{1}{8}k=\frac{1}{8}\cdot240=30\)

Vậy x = 80,y = 48,z = 30