Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy vế trái không âm với mọi x nên điều kiện cần để x là nghiệm của phương trình là vế phải không âm, tức là :
\(101x\ge0\Leftrightarrow x\ge0\)
Khi đó các biểu thức trong tất cả các dấu giá trị tuyệt đối ở vế trái đều dương.
Vì vậy phương trình trở thành :
\(\left(x+\frac{1}{1.5}\right)+\left(x+\frac{1}{5.9}\right)+.....+\left(x+\frac{1}{397.401}\right)=101x\)
\(\Leftrightarrow\left(\frac{1}{1.5}+\frac{1}{5.9}+.....+\frac{1}{397.401}\right)+100x=101x\)
\(\Leftrightarrow x=\frac{1}{1.5}+\frac{1}{5.9}+......+\frac{1}{397.401}\)
\(\Leftrightarrow4x=\frac{4}{1.5}+\frac{4}{5.9}+......+\frac{4}{397.401}\)
\(\Leftrightarrow4x=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-......+\frac{1}{397}-\frac{1}{401}\)
\(\Leftrightarrow4x=1-\frac{1}{401}\)
\(\Leftrightarrow4x=\frac{400}{401}\)
\(\Leftrightarrow x=\frac{100}{401}\)( thỏa mãn điều kiện \(x\ge0\))
Vậy phương trình có nghiệm là \(x=\frac{100}{401}\)
Nhận xét :
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
Vì \(x\ge0\) nên pt a) tương đương với : \(100x+\frac{1+2+3+...+100}{101}=101x\)
\(\Leftrightarrow x=\frac{100.101}{2.101}=50\)
b)
Tương tự câu a) , phương trình tương đương với :
\(49x+\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{...1}{97.99}=50x\)
\(\Rightarrow x=\frac{97}{195}\)
2. \(\frac{1}{x-1}-\frac{7}{x-2}=\frac{1}{\left(x-1\right)\left(2-x\right)}\) (ĐKXĐ:\(x\ne1,x\ne2\))
\(\Leftrightarrow\frac{1}{x-1}+\frac{7}{2-x}=\frac{1}{\left(x-1\right)\left(2-x\right)}\)
\(\Leftrightarrow\frac{2-x+7\left(x-1\right)}{\left(x-1\right)\left(2-x\right)}=\frac{1}{\left(x-1\right)\left(2-x\right)}\)
\(\Rightarrow2-x+7\left(x-1\right)=1\)
\(\Leftrightarrow2-x+7x-7=1\)
\(\Leftrightarrow-x+7x=1-2+7\)
\(\Leftrightarrow6x=6\)
\(\Leftrightarrow x=1\) (Không thỏa mãn ĐKXĐ)
Vậy phương trình trên vô nghiệm
ko phan tich duoc nha bn
chuc bn hoc gioi
happy new year
bài 1
\(ĐKXĐ:1+x\ne0\Rightarrow x\ne-1\)
\(\frac{3-7x}{1+x}=\frac{1}{2}\Rightarrow2\left(3-7x\right)=1+x\)
\(\Leftrightarrow6-14x=1+x\\
\Leftrightarrow-14x-x=1-6\\
\Leftrightarrow-15x=-5\\
\Leftrightarrow x=\frac{1}{3}\left(N\right)\)
a) ĐKXĐ : \(x\ne-2;x\ne5\)
\(\frac{7}{x+2}=\frac{3}{x-5}\)
<=> 3(x + 2) = 7(x - 5)
<=> 3x + 6 = 7x - 35
<=> 4x = 41
<=>x = 41/4 (tm)
Vậy x = 41/4 là ngiệm phương trình
b) ĐKXĐ \(x\ne\pm3\)
\(\frac{2x-1}{x+3}=\frac{2x}{x-3}\)
<=> \(\frac{\left(2x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
<=> (2x - 1)(x - 3) = 2x(x + 3)
<=> 2x2 - 7x + 3 = 2x2 + 6x
<=> 13x = 3
<=> x = 3/13 (tm)
Vậy x = 3/13 là nghiệm phương trình
c) ĐKXĐ : \(x\ne-7;x\ne1,5\)
Khi đó \(\frac{3x-2}{x+7}=\frac{6x+1}{2x-3}\)
<=> \(\frac{\left(3x-2\right)\left(2x-3\right)}{\left(x+7\right)\left(2x-3\right)}=\frac{\left(6x+1\right)\left(x+7\right)}{\left(x+7\right)\left(2x-3\right)}\)
<=> (3x - 2)(2x - 3) = (6x + 1)(x + 7)
<=> 6x2 - 13x + 6 = 6x2 + 43x + 7
<=> 56x = -1
<=> x = -1/56 (tm)
Vậy x = -1/56 là nghiệm phương trình
d) ĐKXĐ : \(x\ne\pm1\)
Khi đó \(\frac{2x+1}{x-1}=\frac{5\left(x-1\right)}{x+1}\)
<=> \(\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{5\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\)
<=> (2x + 1)(x + 1) = 5(x - 1)2
<=> 2x2 + 3x + 1 = 5x2 - 10x + 5
<=> 3x2 - 13x + 4 = 0
<=> 3x2 - 12x - x + 4 = 0
<=> 3x(x - 4) - (x - 4) = 0
<=> (3x - 1)(x - 4) = 0
<=> \(\orbr{\begin{cases}3x-1=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)
Vậy x \(\in\left\{\frac{1}{3};4\right\}\)là nghiệm phương trình
e) ĐKXĐ : \(x\ne1\)
Khi đó \(\frac{4x-5}{x-1}=2+\frac{x}{x-1}\)
<=> \(\frac{3x-5}{x-1}=2\)
<=> 3x - 5 = 2(x - 1)
<=> 3x - 5 = 2x - 2
<=> x = 3 (tm)
Vậy x = 3 là nghiệm phương trình
f) ĐKXĐ : \(x\ne-1\)
\(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)
<=> \(\frac{3x+2}{x+1}=3\)
<=> 3x + 2 = 3(x + 1)
<=> 3x + 2 = 3x + 3
<=> 0x = 1
<=> \(x\in\varnothing\)
Vậy tập nghiệm phương trình S = \(\varnothing\)
g) ĐKXĐ : \(x\ne2\)
Khi đó \(\frac{1}{x-2}+3=\frac{x-3}{2-x}\)
<=>\(\frac{x-2}{x-2}=3\)
<=> (x - 2) = 3(x - 2)
<=> x - 2 = 3x - 6
<=> -2x = -4
<=> x = 2 (loại)
Vậy tập nghiệm phương trình S = \(\varnothing\)
h) ĐKXĐ : \(x\ne7\)
Khi đó \(\frac{1}{7-x}=\frac{x-8}{x-7}-8\)
<=> \(\frac{x-7}{x-7}=8\)
<=> x - 7 = 8(x - 7)
<=> x - 7 = 8x - 56
<=> 7x = 49
<=> x = 7 (loại)
Vậy tập nghiệm phương trình S = \(\varnothing\)
i) ĐKXĐ : \(x\ne0;x\ne6\)
Ta có : \(\frac{x+6}{x}=\frac{1}{2}+\frac{15}{2\left(x-6\right)}\)
<=> \(\frac{x+6}{x}-\frac{15}{2\left(x-6\right)}=\frac{1}{2}\)
<=> \(\frac{2\left(x+6\right)\left(x-6\right)}{2x\left(x-6\right)}-\frac{15x}{2x\left(x-6\right)}=\frac{1}{2}\)
<=> \(\frac{2x^2-72-15x}{2x\left(x-6\right)}=\frac{1}{2}\)
<=> 4x2 - 144 - 30x = 2x(x - 6)
<=> 2x2 - 18x - 144 = 0
<=> x2 - 9x - 72 = 0
<=> x2 - 9x + 81/4 - 72- 81/4 = 0
<=> \(\left(x-\frac{9}{2}\right)^2-\frac{369}{4}=0\)
<=> \(\left(x-\frac{9}{2}+\sqrt{\frac{369}{4}}\right)\left(x-\frac{9}{2}-\sqrt{\frac{369}{4}}\right)=0\)
<=> \(\orbr{\begin{cases}x=\frac{9}{2}-\sqrt{\frac{369}{4}}\\x=\frac{9}{2}+\sqrt{\frac{369}{4}}\end{cases}}\)(tm)
Vậy x \(\in\left\{\frac{9}{2}-\sqrt{\frac{369}{4}};\frac{9}{2}+\sqrt{\frac{369}{4}}\right\}\)
Bài 1:
ĐKXĐ: x≠1
Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4\left(x-1\right)}{\left(x^2+x-1\right)\left(x-1\right)}=0\)
\(\Leftrightarrow x^2+x+1+2x^2-5-4\left(x-1\right)=0\)
\(\Leftrightarrow x^2+x+1+2x^2-5-4x+4=0\)
\(\Leftrightarrow3x^2-3x=0\)
\(\Leftrightarrow3x\left(x-1\right)=0\)
Vì 3≠0
nên \(\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\)
Vậy: x=0
Bài 2:
ĐKXĐ: x≠2; x≠3; \(x\ne\frac{1}{2}\)
Ta có: \(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
\(\Leftrightarrow\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1-\left(2x+5\right)}{\left(x-3\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1-2x-5}{\left(x-3\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow\frac{\left(x+4\right)\left(x-3\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\frac{\left(-x-4\right)\left(x-2\right)}{\left(x-3\right)\left(2x-1\right)\left(x-2\right)}=0\)
\(\Leftrightarrow x^2+x-12-x^2-2x+8=0\)
\(\Leftrightarrow-x-4=0\)
\(\Leftrightarrow-x=4\)
hay x=-4(tm)
Vậy: x=-4
Bài 3:
ĐKXĐ: x≠1; x≠-1
Ta có: \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=3x\left(1-\frac{x-1}{x+1}\right)\)
\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x-1}{x+1}=3x-\frac{3x\left(x-1\right)}{x+1}\)
\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x-1}{x+1}-3x+\frac{3x\left(x-1\right)}{x+1}=0\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{3x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{3x\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)-\left(x^2-2x+1\right)-3x\left(x^2-1\right)+3x\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow x^2+2x+1-x^2+2x-1-3x^3+3x+3x^3-6x^2+3x=0\)
\(\Leftrightarrow-6x^2+10x=0\)
\(\Leftrightarrow2x\left(-3x+5\right)=0\)
Vì 2≠0
nên \(\left[{}\begin{matrix}x=0\\-3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\-3x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{5}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\frac{5}{3}\right\}\)
Bài 4:
ĐKXĐ: x≠1; x≠-3
Ta có: \(\frac{2x}{x-1}+\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}+\frac{4}{\left(x-1\right)\left(x+3\right)}-\frac{\left(2x-5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}=0\)
\(\Leftrightarrow2x^2+6x+4-\left(2x^2-7x+5\right)=0\)
\(\Leftrightarrow2x^2+6x+4-2x^2+7x-5=0\)
\(\Leftrightarrow13x-1=0\)
\(\Leftrightarrow13x=1\)
hay \(x=\frac{1}{13}\)(tm)
Vậy: \(x=\frac{1}{13}\)
Bài 5:
ĐKXĐ: x≠1; x≠-2
Ta có: \(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{x^2+x-2}\)
\(\Leftrightarrow\frac{x+2}{\left(x-1\right)\left(x+2\right)}-\frac{7\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}-\frac{3}{\left(x+2\right)\left(x-1\right)}=0\)
\(\Leftrightarrow x+2-7\left(x-1\right)-3=0\)
\(\Leftrightarrow x+2-7x+7-3=0\)
\(\Leftrightarrow-6x+6=0\)
\(\Leftrightarrow-6\left(x-1\right)=0\)
Vì -6≠0
nên x-1=0
hay x=1(ktm)
Vậy: x∈∅
Bài 6:
ĐKXĐ: x≠4; x≠2
Ta có: \(\frac{x+3}{x-4}+\frac{x-1}{x-2}=\frac{2}{6x-8-x^2}\)
\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}-\frac{2}{6x-8-x^2}=0\)
\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}-\frac{2}{-\left(x^2-6x+8\right)}=0\)
\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}+\frac{2}{\left(x-4\right)\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{\left(x+3\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}+\frac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}+\frac{2}{\left(x-4\right)\left(x-2\right)}=0\)
\(\Leftrightarrow x^2+x-6+x^2-5x+4+2=0\)
\(\Leftrightarrow2x^2-4x=0\)
\(\Leftrightarrow2x\left(x-2\right)=0\)
Vì 2≠0
nên \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\)
Vậy: x=0
Bài 7:
ĐKXĐ: x≠1; x≠-2; x≠-1
Ta có: \(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{1-x^2}\)
\(\Leftrightarrow\frac{1}{x-1}-\frac{7}{x+2}+\frac{3}{x^2-1}=0\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}-\frac{7\left(x-1\right)\left(x+1\right)}{\left(x+2\right)\left(x-1\right)\left(x+1\right)}+\frac{3\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}=0\)
\(\Leftrightarrow x^2+3x+2-7\left(x^2-1\right)+3x+6=0\)
\(\Leftrightarrow x^2+3x+2-7x^2+7x+3x+6=0\)
\(\Leftrightarrow-6x^2+13x+8=0\)
\(\Leftrightarrow-6x^2+16x-3x+8=0\)
\(\Leftrightarrow2x\left(-3x+8\right)+\left(-3x+8\right)=0\)
\(\Leftrightarrow\left(-3x+8\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x+8=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x=-8\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{8}{3};\frac{-1}{2}\right\}\)
\( 1)\dfrac{1}{{x - 1}} + \dfrac{{2{x^2} - 5}}{{{x^3} - 1}} = \dfrac{4}{{{x^2} + x + 1}}\\ DK:x \ne 1\\ \Leftrightarrow \dfrac{{{x^2} + x + 1 + 2{x^2} - 5}}{{{x^3} - 1}} = \dfrac{{4\left( {x - 1} \right)}}{{{x^3} - 1}}\\ \Leftrightarrow {x^2} + x + 1 + 2{x^2} - 5 = 4x - 4\\ \Leftrightarrow 3{x^2} - 3x = 0\\ \Leftrightarrow 3x\left( {x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\left( {tm} \right)\\ x = 1\left( {ktm} \right) \end{array} \right.\\ 2)\dfrac{{x + 4}}{{2{x^2} - 5x + 2}} + \dfrac{{x + 1}}{{2{x^2} - 7x + 3}} = \dfrac{{2x + 5}}{{2{x^2} - 7x + 3}}\\ + DK:x \ne \dfrac{1}{2};x \ne 2;x \ne 3\\ \Leftrightarrow \dfrac{{x + 4}}{{\left( {2x - 1} \right)\left( {x - 2} \right)}} + \dfrac{{x + 1}}{{\left( {x - 3} \right)\left( {2x - 1} \right)}} = \dfrac{{2x + 5}}{{\left( {x - 3} \right)\left( {2x - 1} \right)}}\\ \Leftrightarrow \left( {x + 4} \right)\left( {x - 3} \right) + \left( {x + 1} \right)\left( {x - 2} \right) = \left( {2x + 5} \right)\left( {x - 2} \right)\\ \Leftrightarrow {x^2} + x - 12 + {x^2} - x - 2 = 2{x^2} + x - 10\\ \Leftrightarrow x = - 4\left( {tm} \right)\\ 3)\dfrac{{x + 1}}{{x - 1}} - \dfrac{{x - 1}}{{x + 1}} = 3x\left( {1 - \dfrac{{x - 1}}{{x + 1}}} \right)\\ DK:x \ne \pm 1\\ \Leftrightarrow {\left( {x + 1} \right)^2} - {\left( {x - 1} \right)^2} = 3x\left( {x - 1} \right)\left( {x + 1 - x + 1} \right)\\ \Leftrightarrow {x^2} + 2x + 1 - {x^2} + 2x - 1 = 6x\left( {x - 1} \right)\\ \Leftrightarrow 4x = 6{x^2} - 6x\\ \Leftrightarrow 2x\left( {3x - 5} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \dfrac{5}{3} \end{array} \right.\left( {tm} \right) \)
Còn lại tương tự mà làm nhé!
Ta có : \(x+\frac{1}{1.5}+x+\frac{1}{5.9}+x+\frac{1}{9.13}+......+x+\frac{1}{397.401}=101x\)
\(\Leftrightarrow\left(x+x+x+......+x\right)+\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+......+\frac{1}{397.401}\right)=101x\)
\(\Leftrightarrow100x+\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+......+\frac{1}{397.401}\right)=101x\)
\(\Rightarrow x=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+......+\frac{1}{397.401}\)
\(\Rightarrow4x=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+......+\frac{4}{397.401}\)
\(\Rightarrow4x=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+.....+\frac{1}{397}-\frac{1}{401}\)
\(\Rightarrow4x=1-\frac{1}{401}\)
\(\Rightarrow4x=\frac{400}{401}\)
\(\Rightarrow x=\frac{400}{401}.\frac{1}{4}=\frac{100}{401}\)
tui biết giải, mà k biết có bao nhiêu x, bạn tính sao ra 100x vậy bạn?