Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
A: Hai phương trình này tương đương vì có chung tập nghiệm S={-3}
B: Hai phương trình này không tương đương vì hai phương trình này không có chung tập nghiệm
Câu 2:
\(\left(y-2\right)^2=y+4\)
\(\Leftrightarrow y^2-4y+4-y-4=0\)
\(\Leftrightarrow y\left(y-5\right)=0\)
=>y=0 hoặc y=5
Phương trình 2x – 6 = 0 ⇔ 2x = 6 ⇔ x = 3
⇒ phương trình 2x – 6 = 0 có tập nghiệm S = {3}
Phương trình x(x – 3) = 0 có tập nghiệm S = {0;3}
Vậy 2 phương trình 2x - 6 = 0 và x(x - 3) = 0 không tương đương
1: Hai phương trình này tương đương vì có chung tập nghiệm S={3}
2: Hai phương trình này không tương đương vì pt(1) có tập nghiệm là S={0}, còn pt(2) có tập nghiệm là S={0;-3}
4x−12=02)4x-12=0
⇒4x=12⇒4x=12
⇒x=3⇒x=3
________________________________________________
5x=155x=15
⇒x=3⇒x=3
Vậy hai cặp phương trình này có tương đương với nhau.
7x−1=−14)7x-1=-1
⇒7x=0⇒7x=0
⇒x=0⇒x=0
________________________________________________
2x(x+3)=02x(x+3)=0
TH1:2x=0TH1:2x=0
⇒x=0⇒x=0
TH2:x+3=0TH2:x+3=0
⇒x=−3⇒x=-3
Vậy hai cặp phương trình này không tương đương với nhau.
a) Ta có: \(x^2-2x-3=0\)
\(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy: \(S_1=\left\{3;-1\right\}\)(1)
Ta có: \(\left(x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
Vậy: \(S_2=\left\{-3;-1\right\}\)(2)
Từ (1) và (2) suy ra \(S_1\ne S_2\)
hay Hai phương trình \(x^2-2x-3=0\) và \(\left(x+1\right)\left(x+3\right)=0\) không tương đương với nhau
\(a,\)
\(2x^2-5x-7=0\)
\(\Leftrightarrow2x^2+2x-7x+7\)
\(\Leftrightarrow2x\left(x+1\right)-7\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{7}{2}\end{matrix}\right.\)
\(\left(2x+2\right)\left(x+\dfrac{7}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+2=0\\x+\dfrac{7}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy 2 pt ko tương đương
\(b,\left(2x-3\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x^2-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\pm2\end{matrix}\right.\)
\(6x^2=24\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
Vậy 2 pt tương đương
a: 2x^2-5x-7=0
=>2x^2-7x+2x-7=0
=>(2x-7)(x+1)=0
=>x=7/2 hoặc x=-1
(2x+2)(x+7/2)=0
=>(x+1)(x+7/2)=0
=>x=-7/2 hoặc x=-1
=>Hai phương trình ko tương đương
b: (2x-3)(x^2-4)=0
=>(2x-3)(x-2)(x+2)=0
=>\(x\in\left\{\dfrac{3}{2};2;-2\right\}\)
6x^2=24
=>x^2=4
=>x=2 hoặc x=-2
=>Hai phương trình ko tương đương
\(2x-5=1\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
Vậy...
\(3\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Vậy...
\(5\left(x-1\right)=5x-5\)
\(\Leftrightarrow x-1=x-1\)
\(\Leftrightarrow0x=0\)
Vậy pt có vô số nghiệm
\(3-2x=2\left(2x\right)\)
\(\Leftrightarrow3-2x=4x\)
\(\Leftrightarrow3=6x\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy...
Bổ sung:
a, Cặp pt tương đương
b, Cặp pt không tương đương