K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2023

\(u_n=\dfrac{3^n-1}{2^n}\)

\(\Rightarrow u_{n+1}=\dfrac{3^{n+1}-1}{2^{n+1}}\)

\(\Rightarrow u_{n+1}-u_n=\dfrac{3^{n+1}-1}{2^{n+1}}-\dfrac{3^n-1}{2^n}\)

\(\Rightarrow u_{n+1}-u_n=\dfrac{2^n.3^{n+1}-2^n-2^{n+1}.3^n+2^{n+1}}{2^n.2^{n+1}}\)

\(=\dfrac{2^n.3^n\left(3-2\right)-2^n\left(2-1\right)}{2^{2n+1}}\)

\(=\dfrac{2^n.\left(3^n-1\right)}{2^{2n+1}}\)

\(=\dfrac{\left(3^n-1\right)}{2}>0\left(n>1\right)\)

Vậy dãy \(u_n\)đã cho tăng

22 tháng 3 2020

+) \(U_n=\sqrt{n^2+2}-n=\frac{2}{\sqrt{n^2+2}+n}\)

\(U_{n+1}=\sqrt{\left(n+1\right)^2+2}-\left(n+1\right)=\frac{2}{\sqrt{\left(n+1\right)^2+2}+n+1}\)

Vì \(\frac{2}{\sqrt{n^2+2}+n}>\frac{2}{\sqrt{\left(n+1\right)^2+2}+n+1}\)với mọi số tự nhiên n 

=> \(U_n>U_{n+1}\)với mọi số tự nhiên n

=> \(U_n\) là dãy giảm.

+) Ta có: \(\sqrt{n^2+2}-n\le\sqrt{\left(n+\sqrt{2}\right)^2}-n=\sqrt{2}\)với mọi số tự nhiên n 

=> \(U_n\) là dãy bị chặn

15 tháng 10 2023

a: \(\dfrac{u_n}{u_{n-1}}=\dfrac{3^n}{2^{n+1}}:\dfrac{3^{n-1}}{2^n}\)

\(=\dfrac{3^n}{3^{n-1}}\cdot\dfrac{2^n}{2^{n+1}}=\dfrac{3}{2}>1\)

=>(un) là dãy tăng

c: ĐKXĐ: n>=1

\(u_n=\sqrt{n}-\sqrt{n-1}\)

\(=\dfrac{1}{\sqrt{n}+\sqrt{n-1}}\)

\(\dfrac{u_n}{u_{n-1}}=\dfrac{1}{\sqrt{n}+\sqrt{n-1}}:\dfrac{1}{\sqrt{n-1}+\sqrt{n-2}}\)

\(=\dfrac{\sqrt{n-1}+\sqrt{n-2}}{\sqrt{n-1}+\sqrt{n}}< 1\)

=>Đây là dãy số giảm

NV
13 tháng 12 2018

a/

\(u_n=\dfrac{1}{\left(2-1\right)\left(2+1\right)}+\dfrac{1}{\left(3-1\right)\left(3+1\right)}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)

\(u_n=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+\dfrac{1}{4.6}+...+\dfrac{1}{\left(n-2\right)n}+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)

\(u_n=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n-2}-\dfrac{1}{n}+\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)

\(u_n=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)=\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

\(\Rightarrow lim\left(u_n\right)=lim\left(\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\right)=\dfrac{1}{2}.\dfrac{3}{2}=\dfrac{3}{4}\)

b/ \(u_n=\dfrac{1}{1^2+3}+\dfrac{1}{2^2+6}+...+\dfrac{1}{n^2+3n}=\dfrac{1}{1.4}+\dfrac{1}{2.5}+...+\dfrac{1}{n\left(n+3\right)}\)

\(u_n=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{n}-\dfrac{1}{n+3}\right)\)

\(u_n=\dfrac{1}{3}\left(1+\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{n+1}-\dfrac{1}{n+2}-\dfrac{1}{n+3}\right)\)

\(\Rightarrow lim\left(u_n\right)=lim\left(\dfrac{1}{3}\left(1+\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{n+1}-\dfrac{1}{n+2}-\dfrac{1}{n+3}\right)\right)\)

\(\Rightarrow lim\left(u_n\right)=\dfrac{1}{3}\left(1+\dfrac{1}{2}+\dfrac{1}{3}\right)=\dfrac{11}{18}\)

30 tháng 8 2023

a) Dãy số un = 2n - 1: Đây là một dãy số tăng với hệ số tăng là 2.

b) Dãy số un = 3 - 2n: Đây là một dãy số giảm với hệ số giảm là 2.

c) Dãy số un = n + 2n: Đây là một dãy số tăng với hệ số tăng là 3.

d) Dãy số un = 2n: Đây là một dãy số tăng với hệ số tăng là 2.

e) Dãy số un = 3n: Đây là một dãy số tăng với hệ số tăng là 3.

a: \(u_{n+1}-u_n=2\left(n+1\right)-1-2n+1\)

\(=2n+2-2n=2>0\)

=>Đây là dãy tăng

b: \(u_{n+1}-u_n=-2\left(n+1\right)+3+2n-3=-2n-2+2n=-2< 0\)

=>Đây là dãy giảm

d: \(u_{n+1}-u_n=\dfrac{2}{n+1}-\dfrac{2}{n}=\dfrac{2n-2n-2}{n\left(n+1\right)}=-\dfrac{2}{n\left(n+1\right)}< 0\)

=>Đây là dãy giảm

e: \(\dfrac{u_{n+1}}{u_n}=\dfrac{3^{n+1}}{3^n}=3>1\)

=>Đây là dãy tăng

a: \(u_{n+1}-u_n\)

\(=2-3\left(n+1\right)-2+3n\)

=-3n-3+3n

=-3<0

=>Đây là dãy giảm

b: \(u_{n+1}-u_n\)

\(=\dfrac{n+2}{n+1}-\dfrac{n+1}{n}\)

\(=\dfrac{n^2+2n-n^2-2n-1}{n\left(n+1\right)}=\dfrac{-1}{n\left(n+1\right)}< 0\)

=>Đây là dãy giảm

c: \(u_{n+1}-u_n==\dfrac{1}{n+2}-\dfrac{1}{n+1}\)

\(=\dfrac{n+1-n-2}{\left(n+1\right)\left(n+2\right)}=\dfrac{-1}{\left(n+1\right)\left(n+2\right)}< 0\)

=>Đây là dãy giảm

d: \(\dfrac{u_{n+1}}{u_n}=\dfrac{2^{n+1}}{2^n}=2>1\)

=>Đây là dãy tăng

17 tháng 9 2023

\(u_n=\dfrac{n+2}{n}\)

\(u_{n+1}=\dfrac{n+3}{n+1}\)

\(\Rightarrow u_{n+1}-u_n=\dfrac{n+3}{n+1}-\dfrac{n+2}{n}\)

\(\Rightarrow u_{n+1}-u_n=\dfrac{n\left(n+3\right)-\left(n+1\right)\left(n+2\right)}{n\left(n+1\right)}\)

\(\Rightarrow u_{n+1}-u_n=\dfrac{n^2+3n-\left(n^2+3n+2\right)}{n\left(n+1\right)}\)

\(\Rightarrow u_{n+1}-u_n=\dfrac{n^2+3n-n^2-3n-2}{n\left(n+1\right)}\)

\(\Rightarrow u_{n+1}-u_n=\dfrac{-2}{n\left(n+1\right)}< 0\)

Vậy dãy số \(u_n\) đã cho là dãy giảm