Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Ta có:
- Có dãy số -22, 24, …, (-1)n.22n là cấp số nhân với n số hạng, có số hạng đầu u1 = -4 và công bội q = -4.
Do đó
- Có dãy số là cấp số nhân với n số hạng, có số hạng đầu và công bội q = -1/4.
Do đó
Vậy
1/ \(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\left(x+1\right)=f\left(2\right)=3\)
\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^-}\dfrac{\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\lim\limits_{x\rightarrow2^-}\dfrac{x-1}{x^2+2x+4}=\dfrac{1}{12}\)
\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=f\left(2\right)\ne\lim\limits_{x\rightarrow2^-}f\left(x\right)\)
=> ham so gian doan tai x=2
2/ \(\lim\limits_{x\rightarrow2^-}f\left(x\right)=f\left(2\right)=2a-1\)
\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\dfrac{3x-2-4}{\left(x-2\right)\left(\sqrt{3x-2}+2\right)}=\lim\limits_{x\rightarrow2^+}\dfrac{3}{\sqrt{3x-2}+2}=\dfrac{3}{4}\)
De ham so lien tuc tai x=2
\(\Leftrightarrow\lim\limits_{x\rightarrow2^-}f\left(x\right)=f\left(2\right)=\lim\limits_{x\rightarrow2^+}f\left(x\right)\Leftrightarrow2a-1=\dfrac{3}{4}\Leftrightarrow a=\dfrac{7}{8}\)
a) Dãy số un = 2n - 1: Đây là một dãy số tăng với hệ số tăng là 2.
b) Dãy số un = 3 - 2n: Đây là một dãy số giảm với hệ số giảm là 2.
c) Dãy số un = n + 2n: Đây là một dãy số tăng với hệ số tăng là 3.
d) Dãy số un = 2n: Đây là một dãy số tăng với hệ số tăng là 2.
e) Dãy số un = 3n: Đây là một dãy số tăng với hệ số tăng là 3.
a: \(u_{n+1}-u_n=2\left(n+1\right)-1-2n+1\)
\(=2n+2-2n=2>0\)
=>Đây là dãy tăng
b: \(u_{n+1}-u_n=-2\left(n+1\right)+3+2n-3=-2n-2+2n=-2< 0\)
=>Đây là dãy giảm
d: \(u_{n+1}-u_n=\dfrac{2}{n+1}-\dfrac{2}{n}=\dfrac{2n-2n-2}{n\left(n+1\right)}=-\dfrac{2}{n\left(n+1\right)}< 0\)
=>Đây là dãy giảm
e: \(\dfrac{u_{n+1}}{u_n}=\dfrac{3^{n+1}}{3^n}=3>1\)
=>Đây là dãy tăng
• Ta có: \({u_{n + 1}} = \frac{{2\left( {n + 1} \right) - 1}}{{\left( {n + 1} \right) + 1}} = \frac{{2n + 2 - 1}}{{n + 1 + 1}} = \frac{{2n + 1}}{{n + 2}}\)
Xét hiệu:
\(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{2n + 1}}{{n + 2}} - \frac{{2n - 1}}{{n + 1}} = \frac{{\left( {2n + 1} \right)\left( {n + 1} \right) - \left( {2n - 1} \right)\left( {n + 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{\left( {2{n^2} + n + 2n + 1} \right) - \left( {2{n^2} - n + 4n - 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{2{n^2} + n + 2n + 1 - 2{n^2} + n - 4n + 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{3}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0,\forall n \in {\mathbb{N}^*}\end{array}\)
Vậy \({u_{n + 1}} - {u_n} > 0 \Leftrightarrow {u_{n + 1}} > {u_n}\). Vậy dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.
• Ta có: \({u_n} = \frac{{2n - 1}}{{n + 1}} = \frac{{2\left( {n + 1} \right) - 3}}{{n + 1}} = 2 - \frac{3}{{n + 1}}\)
\(\forall n \in {\mathbb{N}^*}\) ta có:
\(n + 1 > 0 \Leftrightarrow \frac{3}{{n + 1}} > 0 \Leftrightarrow 2 - \frac{3}{{n + 1}} < 2 \Leftrightarrow {u_n} < 2\). Vậy \(\left( {{u_n}} \right)\) bị chặn trên.
\(n \ge 1 \Leftrightarrow n + 1 \ge 1 + 1 \Leftrightarrow n + 1 \ge 2 \Leftrightarrow \frac{3}{{n + 1}} \le \frac{3}{2} \Leftrightarrow 2 - \frac{3}{{n + 1}} \ge 2 - \frac{3}{2} \Leftrightarrow {u_n} \ge \frac{1}{2}\)
Vậy \(\left( {{u_n}} \right)\) bị chặn dưới.
Ta thấy dãy số \(\left( {{u_n}} \right)\) bị chặn trên và bị chặn dưới nên dãy số \(\left( {{u_n}} \right)\) bị chặn.
a) Ta có: \({u_{n + 1}} - {u_n} =[2\left( {n + 1} \right) - 1] - (2n - 1) = 2\left( {n + 1} \right) - 1 - 2n + 1 = 2 > 0 \Rightarrow {u_{n + 1}} > {u_n},\;\forall \;n \in {N^*}\)
Vậy \(\left( {{u_n}} \right)\) là dãy số tăng.
b) Ta có: \({u_{n + 1}} - {u_n} = [- 3\left( {n + 1} \right) + 2] - (3n + 2) = - 3\left( {n + 1} \right) + 2 + 3n - 2 = - 3 < 0\;\)
Vậy \(\left( {{u_n}} \right)\) là dãy số giảm.
c, Ta có:
\(\begin{array}{l}{u_1} = \frac{{{{( - 1)}^{1 - 1}}}}{{{2^1}}} = \frac{1}{2} > 0\\{u_2} = \frac{{{{( - 1)}^{2 - 1}}}}{{{2^2}}} = - \frac{1}{4} < 0\\{u_3} = \frac{{{{( - 1)}^{3 - 1}}}}{{{2^3}}} = \frac{1}{8} > 0\\{u_4} = \frac{{{{( - 1)}^{4 - 1}}}}{{{2^4}}} = - \frac{1}{{16}} < 0\\...\end{array}\)
Vậy \(\left( {{u_n}} \right)\) là dãy số không tăng không giảm.
a) \(2+4+6+...+2n=n\left(n+1\right)\) (1)
\(n=1\) ta có : \(2=1\cdot\left(1+1\right)\) ( đúng)
Giả sử (1) đúng đến n, ta sẽ chứng minh (1) đúng với n+1
Có \(2+4+6+...+2n+2\left(n+1\right)\)
\(=n\left(n+1\right)+2\left(n+1\right)=\left(n+1\right)\left(n+2\right)\)
=> (1) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm
b) sai đề nha, mình search google thì được như này =))
\(1^3+3^3+5^3+...+\left(2n-1\right)^2=n^2\left(2n^2-1\right)\) (2)
\(n=1\) ta có : \(1^3=1^2\cdot\left(2-1\right)\) (đúng)
giả sử (2) đúng đến n, tức là \(1^3+3^3+...+\left(2n-1\right)^3=n^2\left(2n^2-1\right)\)
Ta c/m (2) đúng với n+1
Có \(1^3+3^3+...+\left(2n+1\right)^3=n^2\left(2n^2-1\right)+\left(2n+1\right)^3\)
\(=2n^4+8n^3+11n^2+6n+1\)
\(=\left(n^2+2n+1\right)\left(2n^2+4n+1\right)\)
\(=\left(n+1\right)^2\left[2\left(n+1\right)^2-1\right]\) => (2) đúng với n+1
Theo nguyên lý quy nạp ta có đpcm
a) Ta có: \({u_{n + 1}} = \frac{{2\left( {n + 1} \right) - 1}}{{\left( {n + 1} \right) + 1}} = \frac{{2n + 2 - 1}}{{n + 1 + 1}} = \frac{{2n + 1}}{{n + 2}}\)
Xét hiệu:
\(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{2n + 1}}{{n + 2}} - \frac{{2n - 1}}{{n + 1}} = \frac{{\left( {2n + 1} \right)\left( {n + 1} \right) - \left( {2n - 1} \right)\left( {n + 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{\left( {2{n^2} + n + 2n + 1} \right) - \left( {2{n^2} - n + 4n - 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{2{n^2} + n + 2n + 1 - 2{n^2} + n - 4n + 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{3}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0,\forall n \in {\mathbb{N}^*}\end{array}\)
Vậy \({u_{n + 1}} - {u_n} > 0 \Leftrightarrow {u_{n + 1}} > {u_n}\). Vậy dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.
b) Ta có: \({x_{n + 1}} = \frac{{\left( {n + 1} \right) + 2}}{{{4^{n + 1}}}} = \frac{{n + 1 + 2}}{{{{4.4}^n}}} = \frac{{n + 3}}{{{{4.4}^n}}}\)
Xét hiệu:
\({x_{n + 1}} - {x_n} = \frac{{n + 3}}{{{{4.4}^n}}} - \frac{{n + 2}}{{{4^n}}} = \frac{{n + 3 - 4\left( {n + 2} \right)}}{{{{4.4}^n}}} = \frac{{n + 3 - 4n - 8}}{{{{4.4}^n}}} = \frac{{ - 3n - 5}}{{{{4.4}^n}}} < 0,\forall n \in {\mathbb{N}^*}\)
Vậy \({x_{n + 1}} - {x_n} < 0 \Leftrightarrow {x_{n + 1}} < {x_n}\). Vậy dãy số \(\left( {{x_n}} \right)\) là dãy số giảm.
c) Ta có: \({t_1} = {\left( { - 1} \right)^1}{.1^2} = - 1;{t_2} = {\left( { - 1} \right)^2}{.2^2} = 4;{t_3} = {\left( { - 1} \right)^3}{.3^2} = - 9\), suy ra \({t_1} < {t_2},{t_2} > {t_3}\). Vậy \(\left( {{t_n}} \right)\) là dãy số không tăng không giảm.
a) Ta có: \({u_{n + 1}} = \frac{{2\left( {n + 1} \right) - 1}}{{\left( {n + 1} \right) + 1}} = \frac{{2n + 2 - 1}}{{n + 1 + 1}} = \frac{{2n + 1}}{{n + 2}}\)
Xét hiệu:
\(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{2n + 1}}{{n + 2}} - \frac{{2n - 1}}{{n + 1}} = \frac{{\left( {2n + 1} \right)\left( {n + 1} \right) - \left( {2n - 1} \right)\left( {n + 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{\left( {2{n^2} + n + 2n + 1} \right) - \left( {2{n^2} - n + 4n - 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{2{n^2} + n + 2n + 1 - 2{n^2} + n - 4n + 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{3}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0,\forall n \in {\mathbb{N}^*}\end{array}\)
Vậy \({u_{n + 1}} - {u_n} > 0 \Leftrightarrow {u_{n + 1}} > {u_n}\). Vậy dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.
b) Ta có: \({x_{n + 1}} = \frac{{\left( {n + 1} \right) + 2}}{{{4^{n + 1}}}} = \frac{{n + 1 + 2}}{{{{4.4}^n}}} = \frac{{n + 3}}{{{{4.4}^n}}}\)
Xét hiệu:
\({x_{n + 1}} - {x_n} = \frac{{n + 3}}{{{{4.4}^n}}} - \frac{{n + 2}}{{{4^n}}} = \frac{{n + 3 - 4\left( {n + 2} \right)}}{{{{4.4}^n}}} = \frac{{n + 3 - 4n - 8}}{{{{4.4}^n}}} = \frac{{ - 3n - 5}}{{{{4.4}^n}}} < 0,\forall n \in {\mathbb{N}^*}\)
Vậy \({x_{n + 1}} - {x_n} < 0 \Leftrightarrow {x_{n + 1}} < {x_n}\). Vậy dãy số \(\left( {{x_n}} \right)\) là dãy số giảm.
c) Ta có: \({t_1} = {\left( { - 1} \right)^1}{.1^2} = - 1;{t_2} = {\left( { - 1} \right)^2}{.2^2} = 4;{t_3} = {\left( { - 1} \right)^3}{.3^2} = - 9\), suy ra \({t_1} < {t_2},{t_2} > {t_3}\). Vậy \(\left( {{t_n}} \right)\) là dãy số không tăng không giảm.
A=\(u_{n+1}-u_n=\left(2n+2-5\right)\cdot\left(-1\right)^{n+1}-\left(2n-5\right)\cdot\left(-1\right)^n\)
\(=\left(2n-3\right)\cdot\left(-1\right)^{n+1}-\left(2n-5\right)\cdot\left(-1\right)^n\)
TH1:n là số chẵn
=>A=-(2n-3)-(2n-5)=-2n+3-2n+5=-4n+8
\(u_{n+1}-u_n=-4\left(n+1\right)+8+4n-8=-4n-4+4n=-4< 0\)
=>Dãy số giảm
TH2: n là số lẻ
A=(2n-3)-(2n-5)*(-1)
=2n-3+2n-5=4n-8
\(u_{n+1}-u_n=4\left(n+1\right)-8-4n+8=4>0\)
=>Dãy số tăng