Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
limx→2+g(x)=limx→2+x2−x−2x−2=limx→2+(x−2)(x+1)x−2=limx→2+(x+1)=3limx→2+g(x)=limx→2+x2−x−2x−2=limx→2+(x−2)(x+1)x−2=limx→2+(x+1)=3
(1)
limx→2−g(x)=limx→2−(5−x)=3limx→2−g(x)=limx→2−(5−x)=3(2)
g(2) = 5 – 2 = 3 (3)
Từ (1), (2) và (3) suy ra: limx→2g(x)=g(2)limx→2g(x)=g(2) .
Do đó hàm số y = g(x) liên tục tại x0 = 2
_ Mặt khác trên (-∞, 2), g(x) là hàm đa thức và trên (2, +∞), g(x) là hàm số phân thức hữu tỉ xác định trên (2, +∞) nên hàm số g(x) liên tục trên hai khoảng (-∞, 2) và (2, +∞)
Vậy hàm số y = g(x) liêu tục trên R.
TenAnh1 TenAnh1 A = (-0.04, -7.12) A = (-0.04, -7.12) A = (-0.04, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) C = (-4.78, -5.6) C = (-4.78, -5.6) C = (-4.78, -5.6) D = (7.82, -7.32) D = (7.82, -7.32) D = (7.82, -7.32) E = (-4.82, -6.92) E = (-4.82, -6.92) E = (-4.82, -6.92) F = (10.54, -6.92) F = (10.54, -6.92) F = (10.54, -6.92) G = (-7.14, -8.07) G = (-7.14, -8.07) G = (-7.14, -8.07) H = (12.33, -8.07) H = (12.33, -8.07) H = (12.33, -8.07)
\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}x^2+3x+1=1+3\cdot1+1=5\)
\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}2x+2=2\cdot1+2=4\)
f(1)=1+3+1=5
=>\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=f\left(1\right)\ne\lim\limits_{x\rightarrow1^-}f\left(x\right)\)
=>Hàm số bị gián đoạn tại x=1
\(\lim\limits_{x\rightarrow-3}f\left(x\right)=\lim\limits_{x\rightarrow-3}\dfrac{x^2+3x}{x+3}\)
\(=\lim\limits_{x\rightarrow-3}\dfrac{x\left(x+3\right)}{x+3}=\lim\limits_{x\rightarrow-3}x=-3\)
\(f\left(-3\right)=-6-\left(-3\right)=-6+3=-3\)
Vậy: \(\lim\limits_{x\rightarrow-3}f\left(x\right)=f\left(-3\right)\)
=>Hàm số liên tục tại x=-3
a) Các bạn tự vẽ hình nhé . Đồ thị hàm số y = f(x) là một đường không liền nét mà bị đứt quãng tại x0 = -1. Vậy hàm số đã cho liên tục trên khoảng (-∞; -1) và (- 1; +∞).
b) +) Nếu x < -1: f(x) = 3x + 2 liên tục trên (-∞; -1) (vì đây là hàm đa thức).
+) Nếu x> -1: f(x) = x2 – 1 liên tục trên (-1; +∞) (vì đây là hàm đa thức).
+) Tại x = -1;
Ta có == 3(-1) +2 = -1.
= (-1)2 – 1 = 0.
Vì nên không tồn tại . Vậy hàm số gián đoạn tại
x0 = -1.
TenAnh1 TenAnh1 A = (-0.04, -7.12) A = (-0.04, -7.12) A = (-0.04, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) D = (10.58, -5.6) D = (10.58, -5.6) D = (10.58, -5.6)
\(\lim\limits_{x\rightarrow6}f\left(x\right)=\lim\limits_{x\rightarrow6}\dfrac{3x^2-23x+30}{x-6}\)
\(=\lim\limits_{x\rightarrow6}\dfrac{3x^2-18x-5x+30}{x-6}\)
\(=\lim\limits_{x\rightarrow6}\dfrac{\left(x-6\right)\left(3x-5\right)}{x-6}\)
\(=\lim\limits_{x\rightarrow6}3x-5=3\cdot6-5=13\)
f(6)=a
Hàm số liên tục tại x=6 khi a=13
Hàm số không liên tục tại x=6 khi \(a\ne13\)
\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}-x^2+3x-2=-2^2+3\cdot2-2=0\)
\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^-}x+3=2+3=5\)
f(2)=2+3=5
=>\(\lim\limits_{x\rightarrow2^+}f\left(x\right)\ne\lim\limits_{x\rightarrow2^-}f\left(x\right)=f\left(2\right)\)
=>Hàm số gián đoạn tại x=2