Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow2}f\left(x\right)=\lim\limits_{x\rightarrow2}\dfrac{2-\sqrt{2x^2-4}}{2-x}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{4-2x^2+4}{2+\sqrt{2x^2-4}}\cdot\dfrac{1}{2-x}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{-2\left(x^2-4\right)}{-\left(x-2\right)\left(2+\sqrt{2x^2-4}\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{2\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(2+\sqrt{2x^2-4}\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{2\left(x+2\right)}{2+\sqrt{2x^2-4}}=\dfrac{2\left(2+2\right)}{2+\sqrt{2\cdot2^2-4}}\)
\(=\dfrac{2\cdot4}{2+2}=\dfrac{8}{4}=2\)
\(f\left(2\right)=1\)
=>\(\lim\limits_{x\rightarrow2}f\left(x\right)< >f\left(2\right)\)
=>Hàm số bị gián đoạn tại x=2
a/ Với \(x\ne\pm1\) hàm số liên tục
Với \(x=-1\) hàm số gián đoạn
Xét tại \(x=1\)
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\frac{x^2+2x-1}{x^2-1}=\frac{2}{0}=+\infty\ne f\left(1\right)\)
Vậy hàm số gián đoạn tại \(x=1\)
b/ Với \(x\ne2\) hàm số liên tục (ko cần xét tại \(x=1\) do tại \(x=1\Rightarrow f\left(x\right)=2x^2-6\) là hàm đa thức nên hiển nhiên liên tục)
Xét tại \(x=2\)
\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\frac{\left(2-x\right)\left(x^2-3x+1\right)}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow2^+}\frac{x^2-3x+1}{1-x}=1\ne f\left(2\right)\)
Vậy hàm số gián đoạn tại \(x=2\) (ko cần xét thêm giới hạn trái tại 2)
\(\lim\limits_{x\rightarrow5}f\left(x\right)=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{2x-9}-1}{5-x}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{2x-9-1}{\sqrt{2x-9}+1}\cdot\dfrac{1}{5-x}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{2\left(x-5\right)}{-\left(x-5\right)\left(\sqrt{2x-9}+1\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{-2}{\sqrt{2x-9+1}}=\dfrac{-2}{\sqrt{10-9}+1}=-\dfrac{2}{2}=-1\)
f(5)=3
=>\(\lim\limits_{x\rightarrow5}f\left(x\right)< >f\left(5\right)\)
=>Hàm số bị gián đoạn tại x=5
\(\lim\limits_{x\rightarrow5}f\left(x\right)=\lim\limits_{x\rightarrow5}\dfrac{x^2-8x+15}{x-5}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\left(x-3\right)\left(x-5\right)}{x-5}=\lim\limits_{x\rightarrow5}x-3=5-3=2\)
f(5)=2*5-1=9
=>\(f\left(5\right)\ne\lim\limits_{x\rightarrow5}f\left(x\right)\)
=>Hàm số gián đoạn tại x=5
\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}x^2+3x+1=1+3\cdot1+1=5\)
\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}2x+2=2\cdot1+2=4\)
f(1)=1+3+1=5
=>\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=f\left(1\right)\ne\lim\limits_{x\rightarrow1^-}f\left(x\right)\)
=>Hàm số bị gián đoạn tại x=1
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{2x^2-5x+3}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(2x-3\right)}{x-1}=\lim\limits_{x\rightarrow1}2x-3=2\cdot1-3=-1\)
f(1)=4
=>\(\lim\limits_{x\rightarrow1}f\left(x\right)< >f\left(1\right)\)
=>Hàm số bị gián đoạn tại x=1