Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(D=R\)
\(f\left(-x\right)=\left|-2x-3\right|+\left|-2x+3\right|=\left|2x+3\right|+\left|2x-3\right|=f\left(x\right)\)
Hàm chẵn
b.
\(D=R\)
\(f\left(-x\right)=\dfrac{\left(-x\right)^3+\left(-x\right)}{\left(-x\right)^4+1}=\dfrac{-x^3-x}{x^4+1}=-\dfrac{x^3+x}{x^4+1}=-f\left(x\right)\)
Hàm lẻ
TXĐ: D=R
\(y\left(-x\right)=\left(-x\right)^2+2=x^2+2=y\left(x\right)\)
\(\Rightarrow\) Hàm đã cho là hàm chẵn
y = f(x) = 1/x
TXĐ: D = R \{0} ⇒ x ∈ D thì-x ∈ D
f(-x) = 1/(-x) = -1/x = -f(x)
Vậy y = f(x) = 1/x là hàm số lẻ.
\(f\left(-x\right)=\sqrt[3]{-x+2}-\sqrt[3]{-x-2}\)
\(=-\left(\sqrt[3]{x-2}-\sqrt[3]{x+2}\right)\)
=f(x)
Vậy: f(x) là hàm số chẵn
y = √x
TXĐ: D = [0; +∞) ⇒ x ∈ D thì -x ∉ D
Vậy hàm số trên không là hàm số chẵn cũng không là hàm số lẻ.
\(f\left(-x\right)=\left(-x\right)^{2020}-2\cdot\left(-x\right)^2-3\)
\(=x^{2020}-2x^2-3\)
=f(x)
=> f(x) là hàm số chẵn
Vậy hàm số đa cho là lẻ
Chọn B.