Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)TXĐ D=[-2:2]
\(\forall x\in D\Rightarrow-x\in D\)
f(-x)=\(\sqrt{2-\left(-x\right)}\) +\(\sqrt{2-x}\) =\(\sqrt{2+x}+\sqrt{2-x}=f\left(x\right)\)
Hàm số đồng biến
Câu b) c) giống rồi tự xử nha
d)\(Đk:x^2-4x+4\ge0\Leftrightarrow\left(x-2\right)^2\ge0\)
TXĐ D=R
\(\forall x\in D\Rightarrow-x\in D\)
\(f\left(-x\right)=\sqrt[]{\left(-x\right)^2+4x+4}+\left|2-x\right|=\sqrt{x^2+4x+4}+\left|2-x\right|\ne\mp f\left(x\right)\)
Hàm số không chẵn không lẻ
a) Tập xác định của y = f(x) = |x| là D = R.
∀x ∈ R => -x ∈ R
f(- x) = |- x| = |x| = f(x)
Vậy hàm số y = |x| là hàm số chẵn.
b) Tập xác định của
y = f(x) = (x + 2)2 là R.
x ∈ R => -x ∈ R
f(- x) = (- x + 2)2 = x2 – 4x + 4 ≠ f(x)
f(- x) ≠ - f(x) = - x2 – 4x - 4
Vậy hàm số y = (x + 2)2 không chẵn, không lẻ.
c) D = R, x ∈ D => -x ∈ D
f(– x) = (– x3) + (– x) = - (x3 + x) = – f(x)
Vậy hàm số đã cho là hàm số lẻ.
d) Hàm số không chẵn cũng không lẻ.
\(DK:\hept{\begin{cases}-1\le x\le1\\x\ne0\end{cases}}\)
Ta co:
\(f\left(-x\right)=\frac{\sqrt{1-\left(-x\right)}+\sqrt{-x+1}}{\sqrt{-x+2}-\sqrt{2-\left(-x\right)}}=-\left(\frac{\sqrt{1-x}+\sqrt{x+1}}{\sqrt{x+2}-\sqrt{2-x}}\right)=-f\left(x\right)\)
Suy ra: f(x) la ham so chan
TXĐ của 2 hàm đều đối xứng
a/ \(f\left(-x\right)=\sqrt[3]{-x+2}-\sqrt[3]{-x-2}=-\sqrt[3]{x-2}+\sqrt[3]{x+2}=f\left(x\right)\)
Hàm chẵn
b/ Bạn coi lại hàm, tử số thấy kì kì
a) y= \(\sqrt{1+x}\)- \(\sqrt{1-x}\) ( TXĐ: [-1;1])
D= R\[-1;1]
f(-x)=\(\sqrt{1+\left(-x\right)}\)-\(\sqrt{1-\left(-x\right)}\)=\(\sqrt{1-x}\)-\(\sqrt{1+x}\)
=-\(\sqrt{1+x}\)+\(\sqrt{1-x}\) = -(\(\sqrt{1+x}\)-\(\sqrt{1-x}\))=-f(x)
---> hso lẻ
b) \(x\)2-\(3x^3\)
D=R
f(-x)= (-x)2-3(-x)3=x2+3x3 khác f(x) và f(-x)
---> hsô không chẵn không lẻ
a/ TXĐ là 1 miền đối xứng
\(f\left(-x\right)=\frac{\left(-x\right)^2+2}{\sqrt[3]{\left(-x\right)^3-\left(-x\right)}}=\frac{x^2+2}{\sqrt[3]{-x^3+x}}=-\frac{x^2+2}{\sqrt[3]{x^3-x}}=-f\left(x\right)\)
Hàm lẻ
b/ Miền xác định là miền đối xứng
\(f\left(-x\right)=\frac{1}{\sqrt[3]{-x-3}+\sqrt[3]{-x+3}}=\frac{1}{-\sqrt[3]{x+3}-\sqrt[3]{x-3}}=-\frac{1}{\sqrt[3]{x-3}+\sqrt[3]{x+3}}=-f\left(x\right)\)
Hàm lẻ
\(f\left(-x\right)=\sqrt[3]{-x+2}-\sqrt[3]{-x-2}\)
\(=-\left(\sqrt[3]{x-2}-\sqrt[3]{x+2}\right)\)
=f(x)
Vậy: f(x) là hàm số chẵn