\(2x-2^{2021}\))+(\(2x+2^{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

b: \(f\left(-x\right)=\dfrac{\left|-x+1\right|+\left|-x-1\right|}{\left|-x+1\right|-\left|-x-1\right|}\)

\(=\dfrac{\left|x-1\right|+\left|x+1\right|}{\left|x-1\right|-\left|x+1\right|}\)

=-f(x)

Vậy: f(x) là hàm số lẻ

24 tháng 10 2021

làm giúp mình câu c với mình cho đúng cho

3 tháng 3 2016

a)  miền xác định của \(f\) là \(D=R\backslash\left\{\pm1\right\}\)

\(\text{∀}x\in D\), ta có:  \(-x\in D\) và \(f\left(-x\right)=\frac{2x^4-x^2+3}{x^2-2}=f\left(x\right)\)

\(\Rightarrow\) \(f\) là hàm số chẵn 

b) Ta có: \(\left|2x+1\right|-\left|2x-1\right|\ne0\)\(\Leftrightarrow\left|2x+1\right|\ne\left|2x-1\right|\)

                                               \(\Leftrightarrow\left(2x+1\right)^2\ne\left(2x-1\right)^2\)

                                               \(\Leftrightarrow x\ne0\)

\(\Rightarrow\) Miền xác định của \(f\) là \(D=R\backslash\left\{0\right\}\)

khi đó \(\text{∀}x\in D\) thì \(-x\in D\) và :

\(f\left(-x\right)=\frac{\left|-2x+1\right|+\left|-2x-1\right|}{\left|-2x+1\right|-\left|-2x-1\right|}\)\(=\frac{\left|2x-1\right|+\left|2x+1\right|}{\left|2x-1\right|-\left|2x+1\right|}\)\(=-\frac{\left|2x+1\right|+\left|2x-1\right|}{\left|2x+1\right|-\left|2x-1\right|}\) 

          \(=-f\left(x\right)\Rightarrow f\) là hàm số lẻ 

3 tháng 3 2016

123

5 tháng 8 2018

a) đặc \(f\left(x\right)=y=\left|2x+1\right|+\left|2x-1\right|\)

\(D=R\) \(\Rightarrow\forall x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=\left|-2x+1\right|+\left|-2x-1\right|=\left|2x-1\right|+\left|2x+1\right|=f\left(x\right)\)

\(\Rightarrow\) hàm này là hàm chẳn

b) đặc \(f\left(x\right)=y=\dfrac{\left|x+1\right|+\left|x-1\right|}{\left|x+1\right|-\left|x-1\right|}\)

\(D=R\backslash\left\{0\right\}\) \(\Rightarrow\forall x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=\dfrac{\left|-x+1\right|+\left|-x-1\right|}{\left|-x+1\right|-\left|-x-1\right|}=\dfrac{\left|x-1\right|+\left|x+1\right|}{\left|x-1\right|-\left|x+1\right|}\)

\(=-\dfrac{\left|x+1\right|+\left|x-1\right|}{\left|x+1\right|-\left|x-1\right|}=-f\left(x\right)\)

\(\Rightarrow\) hàm này là hàm lẽ

NV
2 tháng 10 2019

a/ \(f\left(-x\right)=\left(-x\right)^2-2\left(-x\right)=x^2+2x\) hàm ko chẵn ko lẻ

b/ \(f\left(-x\right)=-x^3+x^2-1\) hàm ko chẵn ko lẻ

c/ \(f\left(-x\right)=\left(3+x\right)^2\) hàm không chẵn ko lẻ

d/ \(f\left(-x\right)=\left|-x\right|=\left|x\right|=f\left(x\right)\) hàm chẵn

e/ \(f\left(-x\right)=\left|-x-2\right|+\left|-x+2\right|=\left|x+2\right|+\left|x-2\right|=f\left(x\right)\) hàm chẵn

f/ \(f\left(-x\right)=\left|-2x-1\right|-\left|-2x+1\right|=\left|2x+1\right|-\left|2x-1\right|=-f\left(x\right)\) hàm lẻ

g/ Miền xác định: \(-2\le x\le2\) là miền đối xứng

\(f\left(-x\right)=\sqrt{4-\left(-x\right)^2}=\sqrt{4-x^2}=f\left(x\right)\) hàm chẵn

a: ĐKXĐ: \(\left(2x^2-5x+2\right)\left(x^3+1\right)< >0\)

=>(2x-1)(x-2)(x+1)<>0

hay \(x\notin\left\{\dfrac{1}{2};2;-1\right\}\)

b: ĐKXĐ: x+5<>0

=>x<>-5

c: ĐKXĐ: x4-1<>0

hay \(x\notin\left\{1;-1\right\}\)

d: ĐKXĐ: \(x^4+2x^2-3< >0\)

=>\(x\notin\left\{1;-1\right\}\)

28 tháng 9 2016

a)TXĐ D=[-2:2]  

\(\forall x\in D\Rightarrow-x\in D\)

f(-x)=\(\sqrt{2-\left(-x\right)}\) +\(\sqrt{2-x}\) =\(\sqrt{2+x}+\sqrt{2-x}=f\left(x\right)\)

Hàm số đồng biến

Câu b) c) giống rồi tự xử nha

d)\(Đk:x^2-4x+4\ge0\Leftrightarrow\left(x-2\right)^2\ge0\)

TXĐ D=R

\(\forall x\in D\Rightarrow-x\in D\)

\(f\left(-x\right)=\sqrt[]{\left(-x\right)^2+4x+4}+\left|2-x\right|=\sqrt{x^2+4x+4}+\left|2-x\right|\ne\mp f\left(x\right)\)

Hàm số không chẵn không lẻ

 

 
NV
12 tháng 10 2019

a/ \(f\left(-x\right)=-x^3+2x^2-1\) hàm ko chẵn ko lẻ

b/ TXĐ: \(x\ge-1\) không phải 1 miền đối xứng nên hàm ko chẵn ko lẻ

c/ \(f\left(-x\right)=\left|-x-2\right|=\left|x+2\right|\) hàm vẫn ko chẵn ko lẻ

d/ TXĐ của hàm là đối xứng

\(f\left(-x\right)=\frac{\left|-x-2\right|+\left|-x+2\right|}{\left|-x\right|}=\frac{\left|x+2\right|+\left|x-2\right|}{\left|x\right|}=f\left(x\right)\)

Hàm chẵn

17 tháng 8 2020

a/ f(−x)=−x3+2x2−1f(−x)=−x3+2x2−1 hàm ko chẵn ko lẻ

b/ TXĐ: x≥−1x≥−1 không phải 1 miền đối xứng nên hàm ko chẵn ko lẻ

c/ f(−x)=|−x−2|=|x+2|f(−x)=|−x−2|=|x+2| hàm vẫn ko chẵn ko lẻ

d/ TXĐ của hàm là đối xứng

f(−x)=|−x−2|+|−x+2||−x|=|x+2|+|x−2||x|=f(x)f(−x)=|−x−2|+|−x+2||−x|=|x+2|+|x−2||x|=f(x)

Hàm chẵn

2 tháng 4 2017

a) Tập xác định của y = f(x) = |x| là D = R.

∀x ∈ R => -x ∈ R

f(- x) = |- x| = |x| = f(x)

Vậy hàm số y = |x| là hàm số chẵn.

b) Tập xác định của

y = f(x) = (x + 2)2 là R.

x ∈ R => -x ∈ R

f(- x) = (- x + 2)2 = x2 – 4x + 4 ≠ f(x)

f(- x) ≠ - f(x) = - x2 – 4x - 4

Vậy hàm số y = (x + 2)2 không chẵn, không lẻ.

c) D = R, x ∈ D => -x ∈ D

f(– x) = (– x3) + (– x) = - (x3 + x) = – f(x)

Vậy hàm số đã cho là hàm số lẻ.

d) Hàm số không chẵn cũng không lẻ.


1: ĐKXĐ: \(\left|x^2-4\right|+\left|x+2\right|< >0\)

\(\Leftrightarrow x\ne-2\)

2: ĐKXĐ: \(\left|x-2\right|-\left|x+1\right|< >0\)

\(\Leftrightarrow\left|x-2\right|< >\left|x+1\right|\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2< >x+1\\x-2< >-x-1\end{matrix}\right.\Leftrightarrow2x< >1\Leftrightarrow x< >\dfrac{1}{2}\)

3: ĐKXĐ: \(\left\{{}\begin{matrix}2x+11>=0\\\left\{{}\begin{matrix}3x-2< >4\\3x-2< >-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{11}{2}\\x\notin\left\{2;-\dfrac{2}{3}\right\}\end{matrix}\right.\)

 

17 tháng 5 2017

Để xét xem một điểm với tọa độ cho trước thuộc đồ thị của hàm số \(y=f\left(x\right)\) hay không ta chỉ cần tính giá trị của hàm số tại hoành độ của điểm đã cho. Nếu giá trị của hàm số tại đó bằng tung độ của điểm đang xét thì điểm đó thuộc đồ thị, còn nếu ngược lại thì điểm đang xét không thuộc đồ thị

a) Với điểm \(A\left(-1;3\right)\). Ta có :

\(\left|-\left(-1\right)-3\right|+\left|2.\left(-1\right)+1\right|+\left|-1+1\right|=2+1+0=3\)

bằng tung độ của điểm A, do đó điểm A thuộc đồ thị

b) Điểm B không thuộc đồ thị

c) Điểm C không thuộc đồ thị

d) Điểm D không thuộc đồ thị