K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2020

a, \(y=f\left(x\right)=2x^2+1\)

\(f\left(-x\right)=2x^2+1=f\left(x\right)\Rightarrow\) Là hàm chẵn

b, \(y=f\left(x\right)=5x^3-2x\)

\(f\left(-x\right)=-5x^3+2x=-f\left(x\right)\Rightarrow\) Là hàm lẻ

c, \(y=f\left(x\right)=\sqrt{x-1}\)

ĐK: \(x\ge1\)

\(-f\left(x\right)=-\sqrt{x-1}\ne f\left(x\right)\Rightarrow\) Không phải là hàm số chẵn, lẻ

d, \(y=f\left(x\right)=5x^2-\dfrac{1}{x}\)

ĐK: \(x\ne0\)

\(f\left(-x\right)=5x^2+\dfrac{1}{x}\ne f\left(x\right)\)

\(-f\left(x\right)=-5x^2+\dfrac{1}{x}\ne f\left(-x\right)\)

\(\Rightarrow\) Không phải là hàm số chẵn, lẻ

21 tháng 10 2016

dùng máy tính bỏ túi fx-570es plus là ra ngay

 

TXĐ D=R

Khi x thuộc D thì -x thuộc D

\(f\left(-x\right)=-x\cdot\sqrt{\left(-x\right)^2+4}-2\cdot\left(-x\right)^2=-x\cdot\sqrt{x^2+4}-2x^2\ne f\left(x\right)\)

vậy: hàm số không chẵn cũng không lẻ

NV
10 tháng 7 2019

a/ Hàm số không chẵn không lẻ

b/\(x\in D\Rightarrow-x\in D\)

\(f\left(-x\right)=\frac{2\left(-x\right)^2}{\left(-x\right)^2-9}=\frac{2x^2}{x^2-9}=f\left(x\right)\)

Hàm số chẵn

c/ \(f\left(-x\right)=\frac{\left(-x\right)^3-5\left(-x\right)}{\left(-x\right)^2+2}=-\frac{x^3-5x}{x^2+2}=-f\left(x\right)\)

Hàm lẻ

5 tháng 8 2018

a) đặc \(f\left(x\right)=y=\left|2x+1\right|+\left|2x-1\right|\)

\(D=R\) \(\Rightarrow\forall x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=\left|-2x+1\right|+\left|-2x-1\right|=\left|2x-1\right|+\left|2x+1\right|=f\left(x\right)\)

\(\Rightarrow\) hàm này là hàm chẳn

b) đặc \(f\left(x\right)=y=\dfrac{\left|x+1\right|+\left|x-1\right|}{\left|x+1\right|-\left|x-1\right|}\)

\(D=R\backslash\left\{0\right\}\) \(\Rightarrow\forall x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=\dfrac{\left|-x+1\right|+\left|-x-1\right|}{\left|-x+1\right|-\left|-x-1\right|}=\dfrac{\left|x-1\right|+\left|x+1\right|}{\left|x-1\right|-\left|x+1\right|}\)

\(=-\dfrac{\left|x+1\right|+\left|x-1\right|}{\left|x+1\right|-\left|x-1\right|}=-f\left(x\right)\)

\(\Rightarrow\) hàm này là hàm lẽ

8 tháng 4 2018

\(1\))\(x^2+5x+8=3\sqrt{x^3+5x^2+7x+6}\left(1\right)\\ĐK:x\ge-\dfrac{3}{2} \\ \left(1\right)\Leftrightarrow x^2+5x+8=3\sqrt{\left(2x+3\right)\left(x^2+x+2\right)}\left(2\right)\)

Đặt \(b=\sqrt{2x+3};a=\sqrt{x^2+x+2}\)

\(\left(2\right)\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=b\\a=2b\end{matrix}\right.\)\(\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1\pm\sqrt{5}}{2}\\x=\dfrac{7\pm\sqrt{89}}{2}\end{matrix}\right.\)

8 tháng 4 2018

4)\(ĐK:x\ge-\dfrac{1}{3}\)

\(x^2-7x+2+2\sqrt{3x+1}=0\\ \Leftrightarrow x^2-7x+6+2\sqrt{3x+1}-4=0\\ \Leftrightarrow\left(x-1\right)\left(x-6\right)+\dfrac{12\left(x-1\right)}{2\sqrt{3x+1}+4}=0\\ \Leftrightarrow\left(x-1\right)\left(x-6+\dfrac{12}{2\sqrt{3x+1}+4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x-6+\dfrac{12}{2\sqrt{3x+1}+4}=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left(x-5\right)+\dfrac{6}{\sqrt{3x+1}+2}-1=0\\ \Leftrightarrow\left(x-5\right)+\dfrac{4-\sqrt{3x+1}}{\sqrt{3x+1}+2}=0\\ \Leftrightarrow\left(x-5\right)-\dfrac{3\left(x-5\right)}{\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)}=0\\ \Leftrightarrow\left(x-5\right)\left(1-\dfrac{3}{\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\\left(1-\dfrac{3}{\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)}\right)=0\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left(\sqrt{3x+1}+2\right)\left(4+\sqrt{3x+1}\right)=3\\ \Leftrightarrow3x+1+6\sqrt{3x+1}+8=3\\ \Leftrightarrow x+2\sqrt{3x+1}+2=0\\ \Leftrightarrow2\sqrt{3x+1}=-x-2\ge0\Leftrightarrow x\le-2\)

Vậy pt có 2 nghiệm là x=1 và x=5

15 tháng 7 2018
https://i.imgur.com/RNmuuOR.jpg