K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:

\(0< =cos\left(\dfrac{\Omega}{2n}\right)< =1;n\in Z^+\)

Khi n chẵn thì \(\left(-1\right)^n=1\)

=>\(u_n=cos\left(\dfrac{\Omega}{2n}\right)\)

=>\(0< =u_n< =1\)

=>\(\left(u_n\right)\) bị chặn ở khoảng [0;1]

Khi n lẻ thì \(\left(-1\right)^n=-1\)

=>\(u_n=-cos\left(\dfrac{\Omega}{2n}\right)\)

\(0< =cos\left(\dfrac{\Omega}{2n}\right)< =1\)

=>\(0>=-cos\left(\dfrac{\Omega}{2n}\right)>=-1\)

=>\(0>=u_n>=-1\)

=>\(\left(u_n\right)\) bị chặn ở khoảng [-1;0]

 

b: \(-1< =\dfrac{1}{5^n}< =0\)

=>\(-\sqrt{2}< =\dfrac{\sqrt{2}}{5^n}< =0\)

=>\(-\sqrt{2}< =t_n< =0\)

Vậy: Dãy số bị chặn ở khoảng \(\left[-\sqrt{2};0\right]\)