Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\forall n \in {\mathbb{N}^*}\) ta có:
\(\left. \begin{array}{l}0 \le {\sin ^2}\frac{{n\pi }}{3} \le 1\\ - 1 \le \cos \frac{{n\pi }}{4} \le 1\end{array} \right\} \Leftrightarrow 0 + \left( { - 1} \right) \le {\sin ^2}\frac{{n\pi }}{3} + \cos \frac{{n\pi }}{4} \le 1 + 1 \Leftrightarrow - 1 \le {a_n} \le 2\).
Vậy dãy số \(\left( {{a_n}} \right)\) bị chặn.
b) Ta có: \({u_n} = \frac{{6n - 4}}{{n + 2}} = \frac{{6\left( {n + 2} \right) - 16}}{{n + 2}} = 6 - \frac{{16}}{{n + 2}}\)
\(\forall n \in {\mathbb{N}^*}\) ta có:
\(n + 2 > 0 \Leftrightarrow \frac{{16}}{{n + 2}} > 0 \Leftrightarrow 6 - \frac{{16}}{{n + 2}} < 6 \Leftrightarrow {u_n} < 6\). Vậy \(\left( {{u_n}} \right)\) bị chặn trên.
\(n \ge 1 \Leftrightarrow n + 2 \ge 1 + 2 \Leftrightarrow n + 2 \ge 3 \Leftrightarrow \frac{{16}}{{n + 2}} \le \frac{{16}}{3} \Leftrightarrow 6 - \frac{{16}}{{n + 2}} \ge 6 - \frac{{16}}{3} \Leftrightarrow {u_n} \ge \frac{2}{3}\)
Vậy \(\left( {{u_n}} \right)\) bị chặn dưới.
Ta thấy dãy số \(\left( {{u_n}} \right)\) bị chặn trên và bị chặn dưới nên dãy số \(\left( {{u_n}} \right)\) bị chặn.
Xét câu A, hiển nhiên khi \(n\rightarrow+\infty\) thì \(a_n=\sqrt{n^3+n}\rightarrow+\infty\) nên dãy (an) không bị chặn.
Ở câu C, lấy n chẵn và cho \(n\rightarrow+\infty\) thì dãy (cn) cũng sẽ tiến tới \(+\infty\). Do đó dãy (cn) cũng là 1 dãy không bị chặn.
Ở câu B, ta xét hàm số \(f\left(x\right)=x^2+\dfrac{1}{x}\) trên \(\left[1;+\infty\right]\), ta thấy \(f'\left(x\right)=2x-\dfrac{1}{x^2}\) \(=\dfrac{2x^3-1}{x^2}\) \(=\dfrac{x^3+x^3-1}{x^2}>0,\forall x\ge1\) . Do đó \(f\left(x\right)\) đồng biến trên \(\left[1;+\infty\right]\) và do đó cũng đồng biến trên \(ℕ^∗\). Nói cách khác, (bn) là dãy tăng . Như vậy, nếu bn bị chặn thì tồn tại giới hạn hữu hạn. Giả sử \(\lim\limits_{n\rightarrow+\infty}b_n=L>1\). Chuyển qua giới hạn, ta được \(L=\lim\limits_{n\rightarrow+\infty}\left(n^2+\dfrac{1}{n}\right)=+\infty\), vô lí. Vậy (bn) không bị chặn trên.
Còn lại câu D. Ta thấy với \(n\inℕ^∗\) thì hiển nhiên \(d_n>0\). Ta thấy \(d_n=\dfrac{3n}{n^3+2}=\dfrac{3n}{n^3+1+1}\le\dfrac{3n}{3\sqrt[3]{n^3.1.1}}=1\), với mọi \(n\inℕ^∗\). Vậy, (dn) bị chặn
\(\Rightarrow\) Chọn D.
a) Ta có: \({a_{n + 1}} = 3\left( {n + 1} \right) + 1 = 3n + 3 + 1 = 3n + 4\)
Xét hiệu: \({a_{n + 1}} - {a_n} = \left( {3n + 4} \right) - \left( {3n + 1} \right) = 3n + 4 - 3n - 1 = 3 > 0,\forall n \in {\mathbb{N}^*}\)
Vậy \({a_{n + 1}} > {a_n}\).
a) Ta có: \({b_{n + 1}} = - 5\left( {n + 1} \right) = - 5n - 5\)
Xét hiệu: \({b_{n + 1}} - {b_n} = \left( { - 5n - 5} \right) - \left( { - 5n} \right) = - 5n - 5 + 5n = - 5 < 0,\forall n \in {\mathbb{N}^*}\)
Vậy \({b_{n + 1}} < {b_n}\).
Ta có:
\({a_1} = 0;{a_2} = 1;{a_3} = 2;{a_4} = 3;{a_5} = 4\).
\({b_1} = 2.1 = 2;{b_2} = 2.2 = 4;{b_3} = 2.3 = 6;{b_4} = 2.4 = 8\).
\({c_1} = 1;{c_2} = {c_1} + 1 = 1 + 1 = 2;{c_3} = {c_2} + 1 = 2 + 1 = 3;{c_4} = {c_3} + 1 = 3 + 1 = 4\).
+ Chu vi đường tròn có bán kính \(n\) là \({d_n} = 2\pi n\).
Ta có: \({d_1} = 2\pi .1 = 2\pi ;{d_2} = 2\pi .2 = 4\pi ;{d_3} = 2\pi .3 = 6\pi ;{d_4} = 2\pi .4 = 8\pi \).
a, Số hạng tổng quát của cấp số cộng \(\left(a_n\right)\) là:
\(a_n=a_1+\left(n-1\right)d=5+\left(n-1\right)\left(-5\right)=5-5n+5=10-5n\)
b, Giả sử cấp số cộng \(\left(b_n\right)\) có công sai d, ta có:
\(b_{10}=b_1+\left(10-1\right)d\\ \Leftrightarrow20=2+9d\\ \Leftrightarrow9d=18\\ \Leftrightarrow d=2\)
Vậy số hạng tổng quát của cấp số cộng \(\left(b_n\right)\) là:
\(b_n=b_1+\left(n-1\right)d=2+\left(n-1\right)\cdot2=2+2n-2=2n\)
a:
\(0< =cos\left(\dfrac{\Omega}{2n}\right)< =1;n\in Z^+\)
Khi n chẵn thì \(\left(-1\right)^n=1\)
=>\(u_n=cos\left(\dfrac{\Omega}{2n}\right)\)
=>\(0< =u_n< =1\)
=>\(\left(u_n\right)\) bị chặn ở khoảng [0;1]
Khi n lẻ thì \(\left(-1\right)^n=-1\)
=>\(u_n=-cos\left(\dfrac{\Omega}{2n}\right)\)
\(0< =cos\left(\dfrac{\Omega}{2n}\right)< =1\)
=>\(0>=-cos\left(\dfrac{\Omega}{2n}\right)>=-1\)
=>\(0>=u_n>=-1\)
=>\(\left(u_n\right)\) bị chặn ở khoảng [-1;0]
b: \(-1< =\dfrac{1}{5^n}< =0\)
=>\(-\sqrt{2}< =\dfrac{\sqrt{2}}{5^n}< =0\)
=>\(-\sqrt{2}< =t_n< =0\)
Vậy: Dãy số bị chặn ở khoảng \(\left[-\sqrt{2};0\right]\)
a) Ta có: \( - 1 \le \cos \frac{\pi }{n} \le 1,\forall n \in {\mathbb{N}^*} \Leftrightarrow - 1 \le {a_n} \le 1,\forall n \in {\mathbb{N}^*}\).
Vậy dãy số \(\left( {{a_n}} \right)\) bị chặn.
b) \(\forall n \in {\mathbb{N}^*}\) ta có:
\(n > 0 \Leftrightarrow n + 1 > 0 \Leftrightarrow \frac{n}{{n + 1}} > 0 \Leftrightarrow {b_n} > 0\). Vậy \(\left( {{b_n}} \right)\) bị chặn dưới.
\({b_n} = \frac{n}{{n + 1}} = \frac{{\left( {n + 1} \right) - 1}}{{n + 1}} = 1 - \frac{1}{{n + 1}}\)
Vì \(n + 1 > 0 \Leftrightarrow \frac{1}{{n + 1}} > 0 \Leftrightarrow - \frac{1}{{n + 1}} < 0 \Leftrightarrow 1 - \frac{1}{{n + 1}} < 1 \Leftrightarrow {b_n} < 1\). Vậy \(\left( {{b_n}} \right)\) bị chặn trên.
Ta thấy dãy số \(\left( {{b_n}} \right)\) bị chặn trên và bị chặn dưới nên dãy số \(\left( {{b_n}} \right)\) bị chặn.