Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đề sai
vi nếu ta chi (4;1) và (2;3) thành 2 nhóm thì phản ví dụ

Số học sinh lớp 6A và lớp 6B là 2/3 hay là 8/12
Khi tăng số học sinh lớp 6A thêm 8 bạn, lớp 6B lên 4 bạn thì tỉ số là 3/4 hay là 9/12
vậy lớp 6 A thêm số học sinh hơn lớp 6B là 8 - 4 = 4 bạn
4 bạn ứng với số phần là: 9/12 - 8/12 = 1/12
Lớp 6A có số học sinh là: 4x 12 - 8 = 40 (hs)
Lớp 6B có số học sinh là: 40x 3 : 2= 60 (hs)
Tích của 3 số bất kì là 1 số âm nên trong 3 số đó ít nhất cũng có 1 số âm .Ta tách riêng số âm đó ra , còn lại 15 số . ta chia 15 số này làm 5 nhóm , mỗi nhóm 3 số .Tích 3 số trong mỗi nhóm là 1 số âm . Vậy tích của 5 nhóm với 1 số âm để tách riêng ra là tích của 6 số âm , do đó tích của chúng là 1 số dương

a ) Gọi 11 số tự nhiên liên tiếp 1 bất kì là a ; a + 1 ; a + 2 ; a + 3 ; a + 4 ; a + 5 ; a + 6 ; a + 7 ; a + 8 ; a + 9 ; a + 10
Ta thấy : ( a + 10 ) - a = 10 .
Mà 10 lại chia hết cho 10
Suy ra trong 11 số tự nhiên liên tiếp luôn có 2 số có hiệu là 10 ( ko phải ít nhất nha bạn )
b ) Gọi 100 số tự nhiên liên tiếp bất kì là 50a ; 50a + 1 ; ... ; 50a + 99
Ta thấy ( 50a + 49 ) + ( 50a + 51 ) = 100a + 100
( 50a + 48 ) + ( 50a + 52 ) = 100a + 100
( 50a + 1 ) + ( 50a + 49 ) = 100a + 50
Mà 50 và 100 thì lại chia hết cho 50
Suy ra trong 100 số tự nhiên liên tiếp luôn có ít nhất 2 số có tổng chia hết cho 50

Để chứng minh rằng trong 7 số nguyên tố lớn hơn 3 bất kỳ, luôn tồn tại hai số có hiệu chia hết cho 18, ta sẽ sử dụng một phương pháp đơn giản.
Chọn 7 số nguyên tố lớn hơn 3: Đặt các số này lần lượt là p₁, p₂, p₃, p₄, p₅, p₆, p₇.
Xét các số pᵢ (i = 1, 2, …, 7):
Ta biết rằng mỗi số nguyên tố lớn hơn 3 đều có dạng 6k ± 1 (với k là một số nguyên).Nếu pᵢ ≡ 1 (mod 6), thì pᵢ - 1 ≡ 0 (mod 6) và pᵢ + 1 ≡ 2 (mod 6).Nếu pᵢ ≡ 5 (mod 6), thì pᵢ - 1 ≡ 4 (mod 6) và pᵢ + 1 ≡ 0 (mod 6).Xét các hiệu của các số pᵢ:
Nếu có hai số pᵢ và pⱼ sao cho pᵢ - pⱼ = 18, thì hiệu này chia hết cho 18.Xét trường hợp:Nếu pᵢ ≡ 1 (mod 6) và pⱼ ≡ 5 (mod 6), thì pᵢ - pⱼ = 18.Nếu pᵢ ≡ 5 (mod 6) và pⱼ ≡ 1 (mod 6), cũng có pᵢ - pⱼ = 18.Vậy, luôn tồn tại hai số nguyên tố lớn hơn 3 trong 7 số đã cho có hiệu chia hết cho 18. 🌟

Ta có: 7 số nguyên đó sẽ có dạng toàn là 2k hoặc toàn là 2k+1 hoặc cả 2k và 2k+1:
Xét TH1: (toàn có dạng 2k);
suy ra cả 7 số đều là chẵn nên chia hết cho 2 và chia hết cho : 7x2=14;
Mà 14 chia hết cho 7 nên TH1 chia hết cho 7;
Xét TH2: (toàn có dạng 2k+1);
suy ra 7 x (2k+1) chia hết cho 7;
Vậy TH2 chia hết cho 7;
Xét TH3: Tồn tại ít nhất 2 chẵn và 2 lẻ nên cũng tồn tại ít nhất 1 tổng chia hết cho 7;
Ta có điều phải chứng minh...
cái đề bài của bạn hơi bị sao í..."tổng của 1 số hạng" là sao z?

Giải thích các bước giải:
Từ 1 điểm nối với 2021 điểm còn lại, ta vẽ được 2021 đường thẳng.
Với 2022 điểm, ta vẽ được: 2022. 2021= 4086462 (đường thẳng)
Vì mỗi đường thẳng được tính 2 lần
Nên số đường thẳng thực tế vẽ được là: 4086462 : 2= 2043231 (đường thẳng)
Đáp số: 2043231 đường thẳng
mình cũg ko chắc nữa,nếu mình sai đề thì thôi nhé

a, ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => ĐPCM
Vậy trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
Để chứng minh rằng trong 1013 số bất kỳ từ tập X = {1, 2, ..., 2022} luôn có hai số có hiệu bằng 2, ta sẽ sử dụng định lí lá cờ để giải quyết vấn đề này.
Trong tập hợp X, có tổng cộng 2022 phần tử. Chia tập hợp X thành 1011 cặp theo cách sau: (1, 3), (2, 4), ..., (2019, 2021), (2020, 2022).
Mỗi cặp số với hiệu bằng 2 (ví dụ: 1 - 3 = -2, 2 - 4 = -2, ..., 2019 - 2021 = -2, 2020 - 2022 = -2).
Nếu chọn 1013 số từ tập X, ứng với mỗi số sẽ có một cặp để tạo thành hiệu bằng 2. Vì vậy, khi chọn 1013 số từ tập X, luôn sẽ tồn tại ít nhất một cặp số có hiệu bằng 2.
Do đó, chúng ta đã chứng minh rằng trong 1013 số bất kỳ từ tập X = {1, 2, ..., 2022} luôn có hai số có hiệu bằng 2. cho mik xin 1 tick mik cảm ơn:))))))