K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

Giải bài tập Toán 9 | Giải Toán lớp 9

Kẻ trung tuyến AD của tam giác vuông ABC

⇒ AD = BD = BC/2

Tam giác ABD có: AD = BD, ∠(ABD) = 60o

⇒ ΔABD là tam giác đều

⇒ AB = AD = BC/2 ⇒ BC = AB

Áp dụng định lí Pytago vào tam giác ABC vuông tại A có:

AB2 + AC2 = BC2

⇔ AB2 + AC2 = 4 AB2

⇔ AC2 = 3 AB2 ⇔ AC = √3 AB

⇔ AC/AB = √3

29 tháng 10 2018

a)

Giải bài tập Toán 9 | Giải Toán lớp 9

Tam giác ABC vuông tại A có ∠B = 45o ⇒ΔABC vuông cân tại A

⇒AB = AC ⇒AB/AC = 1

b)

Giải bài tập Toán 9 | Giải Toán lớp 9

Kẻ trung tuyến AD của tam giác vuông ABC

⇒ AD = BD = BC/2

Tam giác ABD có: AD = BD, ∠(ABD) = 60o

⇒ ΔABD là tam giác đều

⇒ AB = AD = BC/2 ⇒ BC = AB

Áp dụng định lí Pytago vào tam giác ABC vuông tại A có:

AB2 + AC2 = BC2

⇔ AB2 + AC2 = 4 AB2

⇔ AC2 = 3 AB2 ⇔ AC = √3 AB

⇔ AC/AB = √3

28 tháng 11 2018

Giải bài tập Toán 9 | Giải Toán lớp 9

Tam giác ABC vuông tại A có ∠B = 45o ⇒ΔABC vuông cân tại A

⇒AB = AC ⇒AB/AC = 1

16 tháng 9 2016

ta có: B=\(\alpha\) mà \(\frac{AC}{AB}=\sqrt{3}\)\(\tan\alpha=\sqrt{3}\)

lại có: 1+ tan2\(\alpha\)=\(\frac{1}{\cos^2\alpha}\)→cos2\(\alpha\)=\(\frac{1}{4}\)→cos \(\alpha\)=\(\frac{1}{2}\)hay \(\frac{AB}{BC}=\frac{1}{2}\)

→ C=30o(Δ vuông có 1 cạnh góc vuông = 1/2 cạnh huyền)

do đó B=600

30 tháng 6 2017

xin lỗi mk ko thể giúp bn đc mk mới hc lp 7 thôi!

27 tháng 7 2018

a) Mình nghĩ là cos a = cot a . sin a chứ :))

CM nà :

Ta có : cot a =  \(\frac{AB}{AC}\)(1)

\(\frac{cosa}{sina}=\frac{AB}{BC}:\frac{AC}{BC}=\frac{AB}{AC}\left(2\right)\)

Từ (1) và (2)  \(\Rightarrow\)cot a =  \(\frac{cosa}{sina}\)

\(\Leftrightarrow\)cos a = cot a . sin a

b) Ta có : tan a =  \(\frac{AC}{AB}\)

Lại có : cot a =  \(\frac{AB}{AC}\)

\(\Rightarrow\)cos a . tan a =  \(\frac{AC.AB}{AB.AC}\)= 1 

Vậy ...

29 tháng 12 2017

Góc 2α =  A M H ^

a, Ta có:  sin 2 α = A H A M = 2 A H A M = 2 A B . A C B C 2 = 2 sin α . cos α

b,  1 + cos2α =  1 + H M A M = H C A M = 2 H C B C =  2 . A C 2 B C 2 = 2 cos 2 α

c, 1 – cos2α =  1 - H M A M = H B A M = 2 H B B C =  2 . A B 2 B C 2 = 2 sin 2 α

6 tháng 2 2019

a, Ta đã chứng minh được: AE =  b + c - a 2

=> AE =  a + b + c - 2 a 2 = p – a

∆AIE có IE = EA.tan B A C ^ 2

= (p – a).tan B A C ^ 2

b, Chú ý: BI ⊥ FD và CIE. Ta có:

B I C ^ = 180 0 - I B C ^ + I C D ^ =  180 0 - 1 2 A B C ^ + A C B ^

180 0 - 1 2 180 0 - B A C ^ =  90 0 + B A C ^ 2

Mà:  E D F ^ = 180 0 - B I C ^ = 90 0 - α 2

c, BH,AI,CK  cùng vuông góc với EF nên chúng song song =>  H B A ^ = I A B ^  (2 góc so le trong)

và  K C A ^ = I A C ^ mà  I A B ^ = I A C ^ nên  H B A ^ = K C A ^

Vậy: ∆BHF:∆CKE

d, Do BH//DP//CK nên  B D D C = H P P K mà DB = DF và CD = CE

=>  H P P K = B F C E = B H C K => ∆BPH:∆CPK =>  B P H ^ = C P E ^

Lại có:  B F P ^ = C E F ^ => ∆BPF:∆CEP (g.g)

mà  B P D ^ = C P D ^ => PD là phân giác của  B P C ^

6 tháng 9 2020

Áp dụng định lí Ceva cho tam giác ABC có 3 cát tuyến AH,BM,CD đồng quy: \(\frac{MA}{MC}.\frac{HC}{HB}.\frac{DB}{DA}=1\Rightarrow\frac{HC}{HB}=\frac{AD}{BD}\)

                                                                          (Vì M trung điểm AC nên \(\frac{MA}{MC}=1\))

(Định lí Ceva này bạn có thể lên google search để nắm rõ, Định lí này chỉ học sinh trong đội tuyển mới học thoi)

Vì CD là phân giác \(\widehat{BCA}\)nên \(\frac{CA}{CB}=\frac{DA}{DB}\Rightarrow\frac{AC}{BC}=\frac{HC}{HB}=\frac{BC-HB}{HB}=\frac{BC}{HB}-1\)

\(\Rightarrow AC=\frac{BC^2}{HB}-BC=\frac{AB^2+AC^2}{HB}-BC=\frac{HB.BC+AC^2}{HB}-BC=\frac{AC^2}{HB}\Rightarrow AC=HB\)

( Chỗ này áp dụng định lí Pythagoras: BC2 = AB2+AC2 và Hệ thức lượng tam giác vuông AB2=HB.BC)

Có \(\hept{\begin{cases}AB^2=HB.BC\\BC^2=AB^2+AC^2\end{cases}\Rightarrow\hept{\begin{cases}AB^2=aAC\\AB^2=a^2-AC^2\end{cases}}\Rightarrow\hept{\begin{cases}AB=\sqrt{aAC}\\AC^2+aAC-a=0\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}AC=\frac{-a+\sqrt{a^2+4a}}{2}=\frac{2a}{a+\sqrt{a^2+4a}}\\AB=\sqrt{aAC}=\sqrt{\frac{2a^2}{a+\sqrt{a^2+4a}}}\end{cases}}\)

5 tháng 11 2020

chua hoc