K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

Gọi I là tâm đường tròn bàng tiếp góc A của tam giác ABC

Ta có:

SABC=SABI+SACI−SBIC
          
=Rb/2 + Rc/2 − Ra/ 2

        =R. (b+c−a/2)

        =R(p−a)

=> R = S/(p-a) (đpcm)

18 tháng 1 2021

Hình như câu b chưa rõ lắm, tam giác ABC cân tại đâu?

18 tháng 1 2021

đề chỉ ghi tam giác cân thôi bạn

 Xét tam giác ABC có I là tâm đường tròn nội tiếp

\(\Rightarrow S_{ABC}=S_{AIB}+S_{BIC}+S_{CIA}=\frac{1}{2}AB.r+\frac{1}{2}BC.r+\frac{1}{2}CA.r\)

\(=\frac{1}{2}\left(AB+BC+CA\right).r=p.r\)

\(\Rightarrow r=\frac{S_{ABC}}{p}\)

1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.a. tứ giác ACOD là hình jb. tam giác BCD là tam giác jc. tính chu vi và diện tích tam giác BCD3. tam giác ABC nhọn nội tiếp...
Đọc tiếp

1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất

2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.

a. tứ giác ACOD là hình j

b. tam giác BCD là tam giác j

c. tính chu vi và diện tích tam giác BCD

3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.

a. CM: tứ giác BHCD là hình bình hành

b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với1. cho nữa đường tròn tâm O bán kính R có đường kính AB và bán kính AC vuông góc AB, điểm M di động trên cung AC, điểm H là hình chiếu của M lên OC. xác dịnh vị trí của M để MA + MH lớn nhất

2. cho (o;r) có đường kính AB, đường trung trực của AO cắt đường tròn ở C và D.

a. tứ giác ACOD là hình j

b. tam giác BCD là tam giác j

c. tính chu vi và diện tích tam giác BCD

3. tam giác ABC nhọn nội tiếp đường tròn O; AB là 1 đường kính của đường tròn. H là trực tâm của tam giác ABC.

a. CM: tứ giác BHCD là hình bình hành

b. CM: HA + HB + HC = 2( OM + ON + OK) trong đó M, N, K là hình chiếu của O lên 3 cạnh của tam giác ABCgiúp với

0
4 tháng 10 2018

a, Áp dụng tính chất 2 tiếp tuyến tại A,B,C ta chứng minh được  b + c - a 2 = AD

b,  S A B C = S A I B + S B I C + S C I A

Mà ID = IE = IF = r =>  S A B C  = p.r

c, Vì AM là phân giác của  B A C ^ =>  B M M C = B A A C

Áp dụng tính chất tỉ lệ thức thu được BM = a c c + b