K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 4 2023

1. Số phần tử của không giam mẫu: \(6.6=36\)

2. Biến cố A: có 6 phần tử (liệt kê 11, 22,...)

3. B: Ứng với mỗi lần tung thứ nhất, lần tung thứ 2 luôn có 2 biến cố thuận lợi để tổng 2 lần tung chia hết cho 3 (ví dụ lần 1 bằng 1 thì lần 2 bằng 2 hoặc 5). Do đó có tổng cộng \(6.2=12\) biến cố thuận lợi

4. C: Số biến cố thuận lợi là: \(5+4+3+2+1=15\) (ứng với lần tung thứ nhất lần lượt bằng 6, 5, 4, 3, 2)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Kết quả của phép thử là một cặp số (a;b) trong đó a, b lần lượt là số chấm xuất hiện trên con xúc xắc thứ nhất và thứ hai, suy ra:

\(B = \left\{ {(1;1),(2;2),(3;3),(4;4),(5;5),(6;6)} \right\}\)

\(C = \left\{ {(2;1),(4;2),(6;3)} \right\}\)

b) Từ tập hợp mô tả biến cố ở câu a) ta có:

Có 6 kết quả thuận lợi cho biến  cố B

Có 3 kết quả thuận lợi cho biến cố C

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

+) Không gian mẫu của phép thử là: \(\Omega {\rm{ }} = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}.\) Vậy \(n\left( \Omega  \right) = 4\)

+) Các kết quả thuận lợi cho biến cố A là:  \(A{\rm{ }} = {\rm{ }}\left\{ {SS;{\rm{ }}NN} \right\}\). Vậy \(n\left( A \right) = 2\)

+) Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{2}{4} = \frac{1}{2}\)

a: n(omega)=36

A={(1;5); (2;5); (3;5); (4;5); (5;5); (6;5)}

=>n(A)=6

=>P(A)=6/36=1/6

b: B={(1;6); (2;5); (3;4); (4;3); (5;2); (6;1)}

=>n(B)=6

=>P(B)=1/6

d: D={(2;1); (2;2); ...; (2;6); (3;1); (3;2); ...;(3;6);(5;1); (5;2);...;(5;6)}

=>P(D)=18/36=1/2

27 tháng 9 2023

\(n_{\Omega}=6^3=216\)

a, A: "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc chia hết cho 3"

\(\overline{A}\) : "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc không chia hết cho 3"

Để xuất hiện TH xảy ra biến cố đối của A thì cả 3 con xúc sắc đều ra số chấm không chia hết cho 3, thuộc {1;2;4;5}

=> \(n_{\overline{A}}=4.4.4=64\)

Vậy, XS của biến cố A là:

\(P_{\left(A\right)}=1-P_{\overline{A}}=1-\dfrac{n_{\overline{A}}}{n_{\Omega}}=1-\dfrac{64}{216}=\dfrac{19}{27}\)

b, B: "Tổng các số chấm ở mặt xuất hiện ba con xúc sắc lớn hơn 4"

=> \(\overline{B}\) : "Tổng các số chấm ở mặt xuất hiện trên ba con xúc sắc không lớn hơn 4"

=> \(\overline{B}=\left\{\left(1;1;1\right);\left(2;1;1;\right);\left(1;2;1\right);\left(1;1;2\right)\right\}\Rightarrow n_{\overline{B}}=4\)

Vậy, XS của biến cố B là:

\(P_{\left(B\right)}=1-P_{\overline{B}}=1-\dfrac{n_{\left(B\right)}}{n_{\Omega}}=1-\dfrac{4}{216}=\dfrac{53}{54}\)

 

 

27 tháng 9 2023

Em không hoán vị cho 2 TH còn lại vì khả năng 2 chấm có thể xuất hiện ở từng viên 1 hả?

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Vì hai con xúc xắc được gieo đồng thời, nên kết quả không phân biệt thứ tự

Gọi A là biến cố “Số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 3 chấm”. Tập hợp mô tả biến cố A là:

\(A = \left\{ {(1;4),(2;5),(3;6)} \right\}\)(Với kết quả của phép thử là cặp số (i; j) trong đó i và j lần lượt là số chấm trên hai con xúc xắc)

b) Vì hai con xúc xắc được gieo đồng thời, nên kết quả không phân biệt thứ tự

Gọi B là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc chia hết cho 5”. Tập hợp mô tả biến cố B là:

\(A = \left\{ {(1;5),(2;5),(3;5),(4;5),(6;5)} \right\}\)(Với kết quả của phép thử là cặp số (i; j) trong đó i và j lần lượt là số chấm trên hai con xúc xắc)

c) Vì hai con xúc xắc được gieo đồng thời, nên kết quả không phân biệt thứ tự

Gọi C là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc là số lẻ”. Tập hợp mô tả biến cố C là:

\(C = \left\{ {(a,b)\left| {a = 2,4,6;b = 1;3;5} \right.} \right\}\)(Với kết quả của phép thử là cặp số (a,b) trong đó a và b lần lượt là số chấm trên hai con xúc xắc)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Không gian mẫu trong trò chơi trên là tập hợp \(\Omega  = \left\{ {(i,j)|i,j = 1,2,3,4,5,6} \right\}\)trong đó (i,j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”. Vậy \(n(\Omega ) = \;36.\)

a) Gọi A là biến cố “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”.

Các kết quả có lợi cho A là: (4; 6) (5;5) (5;6) (6; 4) (6;5) (6;6). Vậy \(n(A) = \;6.\)

Vậy xác suất của biến cố A là \(P(A) = \;\frac{{n(A)}}{{n(\Omega )}} = \frac{6}{{36}} = \frac{1}{6}.\)

 b) Gọi  B là biến cố “Mặt 1 chấm xuất hiện ít nhất một lần”.

Các kết quả có lợi cho B là: (1; 1) (1 : 2) (1 : 3) (1; 4) (1;5) (1; 6) (2 ; 1) (3;1) (4; 1) (5;1) (6;1). Vậy \(n(B) = \;11.\)

Vậy xác suất của biến cố B là: \(P(B) = \;\frac{{n(B)}}{{n(\Omega )}} = \frac{{11}}{{36}}.\)

27 tháng 9 2023

Tổng số chấm của hai con xúc sắc lớn nhất có thể là: 6+6=12 (chấm)

Vậy tất cả các kết quả gieo hai con xúc sắc đều là kết quả thuận lợi đối với biến cố D. Số kết quả thuận lợi: 6 x 6 = 36 (kết quả)

Và không có kết quả nào thuận lợi với biến cố E (không có TH nào tổng số chấm hai con xúc sắc gieo ra được bằng 13)

a: A={(1;1); (1;2); ...; (1;6)}

=>n(A)=6

P(A)=6/36=1/6

b: B={(1;4); (2;3); (3;2); (4;1)}

=>P(B)=4/36=1/9

c: C={(3;1); (4;2); (5;3); (6;4)}

=>P(C)=4/36=1/9

d: D={(1;3); (1;5); (1;1); (3;5); (3;1); (3;3); (5;3); (5;1); (5;5)}

=>P(D)=9/36=1/4

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Tổng số kết quả có thể xảy ra của phép thử là \(n(\Omega ) = {6^2}\)

a) Gọi biến cố A “Tổng số chấm xuất hiện lớn hơn hoặc bằng 10” là biến cố đối của biến cố “Tổng số chấm xuất hiện nhỏ hơn 10”

A xảy ra khi số chấm xuất hiện là 5 hoặc 6. Số kết quả thuận lợi cho A là \(n(A) = {2^2}\)

Xác suất của biến cố A là \(P(A) = \frac{{{2^2}}}{{{6^2}}} = \frac{1}{9}\)

Vậy xác suất của biến cố “Tổng số chấm xuất hiện nhỏ hơn 10” là \(1 - \frac{1}{9} = \frac{8}{9}\)

b) Gọi biến cố A: “Tích số chấm xuất hiện không chia hết cho 3” là biến cố đối của biến cố ‘“Tích số chấm xuất hiện chia hết cho 3”

A xảy ra khi mặt xuất hiện trên hai con xúc xắc đều xuất hiện số chấm không chia hết cho 3. Số kết quả thuận lợi cho A là: \(n(A) = {4^2}\)

Xác suất của biến cố A là: \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{{4^2}}}{{{6^2}}} = \frac{4}{9}\)

Vậy xác suất của biến cố “Tích số chấm xuất hiện chia hết cho 3” là \(1 - \frac{4}{9} = \frac{5}{9}\)