Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mệnh đề sau sai
Vì khi x = 1 thì :
VT = \(\frac{1^2-1}{1-1}=\frac{0}{0}\) ( không có phép chia cho 0 )
Phủ định của mệnh đề :
\(\forall x\in R\backslash\left\{1\right\};\frac{x^2-1}{x-1}=x+1\) là mệnh đề đúng
a/ \(\frac{1-cos\left(2x+\frac{\pi}{2}\right)-1}{cosx\left(\frac{1}{sinx}-sinx\right)}=\frac{sin2x}{cosx\left(\frac{1-sin^2x}{sinx}\right)}=\frac{2sinx.cosx.sinx}{cosx.cos^2x}=\frac{2sin^2x}{cos^2x}=2tan^2x\)
b/ \(x^2+2x+2019=\left(x+1\right)^2+2018>0\) \(\forall x\)
\(-1\le\frac{x^2-2x-m}{x^2+2x+2019}\Leftrightarrow x^2-2x-m\ge-x^2-2x-2019\)
\(\Leftrightarrow2x^2\ge m-2019\) \(\forall x\)
\(\Rightarrow m-2019\le0\Rightarrow m\le2019\)
\(\frac{x^2-2x-m}{x^2+2x+2019}< 2\Leftrightarrow x^2-2x-m< 2x^2+4x+4038\)
\(\Leftrightarrow x^2-6x+9>-m-4029\)
\(\Leftrightarrow\left(x-3\right)^2>-m-4029\) \(\forall x\)
\(\Rightarrow-m-4029< 0\Rightarrow m>-4029\)
Vậy \(-4029< m\le2019\)
1/ Tinh ∆. Pt co 2 nghiem x1,x2 <=> ∆>=0.
Theo dinh ly Viet: S=x1+x2=-b/a=m+3.
Theo gt: |x1|=|x2| <=> ...
2/ \(\frac{\sin^2x-\cos^2x}{1+2\sin x.\cos x}\)
\(=\frac{\cos^2x\left(\frac{\sin^2x}{\cos^2x}-\frac{\cos^2x}{\cos^2x}\right)}{\cos^2x\left(\frac{1}{\cos^2x}+\frac{2\sin x.\cos x}{\cos^2x}\right)}\)
\(=\frac{\tan^2x-1}{\tan^2x+1+2\tan x}\)
\(=\frac{\left(\tan x-1\right)\left(\tan x+1\right)}{\left(\tan x+1\right)^2}\)
\(=\frac{\tan x-1}{\tan x+1}\left(dpcm\right)\)
c/ A M C B N BC=8 AC=7 AB=6
- Ta có: \(\overrightarrow{BA}^2=\left(\overrightarrow{CA}-\overrightarrow{CB}\right)^2\)
\(\Leftrightarrow BA^2=CA^2-2\overrightarrow{CA}.\overrightarrow{CB}+CB^2\)
\(\Leftrightarrow\overrightarrow{CA}.\overrightarrow{CB}=\frac{CA^2+CB^2-BA^2}{2}=\frac{77}{2}\)
- \(\overrightarrow{MN}^2=\left(\overrightarrow{CN}-\overrightarrow{CM}\right)^2=\left(\frac{3}{2}\overrightarrow{CB}-\frac{5}{7}\overrightarrow{CA}\right)^2\)
\(\Leftrightarrow MN^2=\frac{9}{4}CB^2-\frac{15}{7}\overrightarrow{CA}.\overrightarrow{CB}+\frac{25}{49}CA^2\)
\(=\frac{9}{4}.64-\frac{15}{7}.\frac{77}{2}+\frac{25}{49}.49\)
\(=\frac{173}{2}\)
\(\Rightarrow MN=\sqrt{\frac{173}{2}}=\frac{\sqrt{346}}{2}\)
a/ ĐKXĐ: \(x\ne m\) \(\Rightarrow m\le1\)
b/ ĐKXĐ: \(-x-m+2>0\Rightarrow x< 2-m\)
\(\Rightarrow2-m\ge1\Rightarrow m\le1\)
c/ Bạn coi lại mẫu số
Lời giải:
Ta có:
$x+\frac{1}{x}\leq -2$
$\Leftrightarrow x+\frac{1}{x}+2\leq 0$
$\Leftrightarrow \frac{x^2+2x+1}{x}\leq 0$
$\Leftrightarrow \frac{(x+1)^2}{x}\leq 0$
$\Leftrightarrow x< 0$ (do $(x+1)^2\geq 0$)
Dấu $\Leftrightarrow$ biểu hiện định lý trên có cả định lý thuận và đảo.