K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

a) F(x) = \(-x^2\left(x-1\right)\left(x+2\right)\left(x+2\right)=\left(1-x\right)x^2\left(x+2\right)^2\\ \)

\(\left\{{}\begin{matrix}x^2\ge0\\\left(x+2\right)^2\ge0\end{matrix}\right.\) => dấu biểu thức chỉ phụ thuộc vào thừa số (1-x)

F(x) =0 khi x={-2,0,1}

F(x) > 0 khi x<1 và khác -2 và 0

f(x) <0 khi x> 1

7 tháng 4 2017

Tử f(x) =x^2(x^2-3x+2) =x^2(x-1)(x-2)

tương tự a) dấu của tử phụ thuộc (x-1)(x-2)

Mẫu f(x) =x^2 -x-30 =(x-5)(x+6)

Phần hỗ trợ Lập bảng đây khó thao tác

=> viết bằng hệ {điểm tới hạn xet x={-6,0,1,2,5}

Khi => \(\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)=>f(x) =0

Khi \(\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\) => f(x) không xác định

Khi \(x< -6\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)>0\end{matrix}\right.\)\(\Rightarrow f\left(x\right)>0\)

khi -6<x<1 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) <0

khi 1<x<2 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)< 0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) >0

khi 2<x<5 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) <0

khi x>5 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)>0\end{matrix}\right.\) => f(x) >0

7 tháng 4 2017

a) 3x^3 -10x+3 =(3x-1)(x-3)

x -vc 1/3 5/4 3 +vc
3x-1 - 0 + + + + +
x-3 - - - - - 0 +
4x-5 - - - 0 + + +
VT - 0 + 0 - 0 +

Kết luận

VT< 0 {dấu "-"} khi x <1/3 hoắc 5/4<x<3

VT>0 {dấu "+"} khi x 1/3<5/4 hoặc x> 3

VT=0 {không có dấu} khi x={1/3;5/4;3}

15 tháng 4 2017

a) Ta lập bảng xét dấu

Kết luận: f(x) < 0 nếu - 3 < x <

f(x) = 0 nếu x = - 3 hoặc x =

f(x) > 0 nếu x < - 3 hoặc x > .

b) Làm tương tự câu a).

f(x) < 0 nếu x ∈ (- 3; - 2) ∪ (- 1; +∞)

f(x) = 0 với x = - 3, - 2, - 1

f(x) > 0 với x ∈ (-∞; - 3) ∪ (- 2; - 1).

c) Ta có: f(x) =

Làm tương tự câu b).

f(x) không xác định nếu x = hoặc x = 2

f(x) < 0 với x ∈

f(x) > 0 với x ∈ ∪ (2; +∞).

d) f(x) = 4x2 – 1 = (2x - 1)(2x + 1).

f(x) = 0 với x =

f(x) < 0 với x ∈

f(x) > 0 với x ∈


7 tháng 4 2017

a)

\(\Delta=9-20=-11\) vô nghiêm

=> A luôn dương (+) với mọi x thuộc R

b) {a-b+c=0}

B= 0 khi x= -1 hoặc x= 5/2

B>0 khi -1<x<5/2

B<0 khi x<-1 hoặc x>/52

c) x^2 +12x+36 =(x+6)^2

C = 0 khi x =-6

C > 0 mọi x khác -6

d)

D = 0 khi x =3/2 hoặc x=-5

D> 0 khi x<-5 hoặc x>3/2

D<0 khi -5<x<3/2

8 tháng 5 2017

Xét:
\(4x-1=0\Leftrightarrow x=\dfrac{1}{4}\); \(x+2=0\Leftrightarrow x=-2\);
\(3x-5=0\Leftrightarrow x=\dfrac{5}{3}\); \(-2x+7=0\Leftrightarrow x=\dfrac{7}{2}\).
TenAnh1 TenAnh1 B = (11.24, -6.26) B = (11.24, -6.26) B = (11.24, -6.26) C = (-0.38, -6.9) C = (-0.38, -6.9) C = (-0.38, -6.9) D = (14.98, -6.9) D = (14.98, -6.9) D = (14.98, -6.9)
Vậy: \(f\left(x\right)=0\) khi \(x=\left\{-2;-\dfrac{1}{4};\dfrac{5}{3};\dfrac{7}{2}\right\}\).
\(f\left(x\right)>0\) khi \(\left(-2;-\dfrac{1}{4}\right)\cup\left(\dfrac{5}{3};\dfrac{7}{2}\right)\).
\(f\left(x\right)< 0\) khi \(\left(-\infty;-2\right)\cup\left(-\dfrac{1}{4};\dfrac{5}{3}\right)\cup\left(\dfrac{7}{2};+\infty\right)\).

24 tháng 2 2020

giúp mình với mình đang cần gấp