K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

Hàm số Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10 có:

+ Tập xác định D = R.

+ Có Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10 nên hàm số đồng biến trên R.

+ Tại x = 0 thì y = 1/2 . 0 – 1 = –1 . Vậy A (0; –1) thuộc đồ thị hàm số.

Tại x = 2 thì y = 1/2 . 2 – 1 = 0. Vậy B (2; 0) thuộc đồ thị hàm số.

Vậy đồ thị hàm số là đường thẳng đi qua hai điểm A (0; –1) và B (2; 0).

Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10

25 tháng 6 2017

Hàm số y = |x + 1|

Nếu x + 1 ≥ 0 hay x ≥ –1 thì y = x + 1.

Nếu x + 1 < 0 hay x < –1 thì y = –(x + 1) = –x – 1. 

Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10

+ Tập xác định: R

+ Trên (–∞; –1), y = x + 1 đồng biến.

Trên (–1 ; +∞), y = –x – 1 nghịch biến.

Ta có bảng biến thiên :

Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10

+ Đồ thị hàm số gồm hai phần:

Phần thứ nhất : Nửa đường thẳng y = x + 1 giữ lại các điểm có hoành độ ≥ –1.

Phần thứ hai : nửa đường thẳng y = –x – 1 giữ lại các điểm có hoành độ < –1.

Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10

15 tháng 1 2019

Hàm số Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10 có :

+ Tập xác định D = R.

+ Trên (–∞; 0), hàm số y = –x nghịch biến.

Trên (0 ; +∞), hàm số y = x đồng biến.

Bảng biến thiên :

Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10

+ Đồ thị hàm số gồm hai phần:

Phần thứ nhất: Nửa đường thẳng y = –x giữ lại phần bên trái trục tung.

Phần thứ hai: Nửa đường thẳng y = x giữ lại phần bên phải trục tung.

Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10

14 tháng 1 2017

Hàm số y = 4 – 2x có:

+ Tập xác định D = R

+ Có a = –2 < 0 nên hàm số nghịch biến trên R.

+ Tại x = 0 thì y = 4 ⇒ A(0 ; 4) thuộc đồ thị hàm số.

Tại x = 2 thì y = 0 ⇒ B(2; 0) thuộc đồ thị hàm số.

Vậy đồ thị hàm số là đường thẳng đi qua hai điểm A(0 ; 4) và B(2; 0).

Giải bài 9 trang 50 sgk Đại số 10 | Để học tốt Toán 10

12 tháng 8 2018

y = –x2 + x – 1

+ Tập xác định R

+ Đỉnh A(1/2 ; –3/4).

+ Trục đối xứng x = 1/2.

+ Đồ thị không giao với trục hoành.

+ Giao điểm với trục tung: B(0; –1).

Điểm đối xứng với B(0 ; –1) qua đường thẳng x = 1/2 là C(1 ; –1).

+ Bảng biến thiên:

Giải bài 2 trang 49 sgk Đại số 10 | Để học tốt Toán 10

+ Đồ thị hàm số :

Giải bài 2 trang 49 sgk Đại số 10 | Để học tốt Toán 10

11 tháng 7 2019

y = 2x2 + x + 1

+ Tập xác định: R

+ Đỉnh A(–1/4 ; 7/8).

+ Trục đối xứng x = –1/4.

+ Đồ thị không giao với trục hoành.

+ Giao điểm với trục tung B(0; 1).

Điểm đối xứng với B(0 ; 1) qua đường thẳng x = –1/4 là C(–1/2 ; 1)

+ Bảng biến thiên:

Giải bài 2 trang 49 sgk Đại số 10 | Để học tốt Toán 10

+ Đồ thị hàm số:

Giải bài 2 trang 49 sgk Đại số 10 | Để học tốt Toán 10

 

26 tháng 10 2021

b: 

x-∞1+∞
y+∞0+∞

 

30 tháng 3 2017

a) Bảng biến thiên

Đồ thị hàm số

Đồ thị là đường thẳng đi qua 2 điểm:

+ Giao với trục tung P(0,-1)

+ Giao với trục hoành Q(2, 0)

b) Bảng biến thiên

Đồ thị hàm số

Đồ thị là đường thẳng đi qua 2 điểm:

+ Giao với trục tung P(0,4)

+ Giao với trục hoành Q(2, 0)

c) y=√x2y=x2 = |x| ={−x,x≤0x,x>0{−x,x≤0x,x>0

Bảng biến thiên

Đồ thị hàm số

d) y = |x+1| = {−x−1,x≤−1x+1,x>−1{−x−1,x≤−1x+1,x>−1

Bảng biến thiên

Đồ thị hàm số

12 tháng 7 2018

a) f(x) = 2x.(x+2) - (x+2)(x+1) = 2x2 + 4x - (x2 + 3x + 2) = x2 + x - 2

Tam thức x2 + x – 2 có hai nghiệm x1 = -2 và x2 = 1, hệ số a = 1 > 0.

Vậy:

+ f(x) > 0 nếu x > x2 = 1 hoặc x < x1 = -2, hay x ∈ (-∞; -2) ∪ (1; + ∞)

+ f(x) < 0 nếu x1 < x < x2 hay x ∈ (-2; 1)

+ f(x) = 0 nếu x = -2 hoặc x = 1.

b)

* Hàm số y = 2x(x+2) = 2x2 + 4x có đồ thị (C1) là parabol có:

+ Tập xác định: D = R

+ Đỉnh I1( -1; -2)

+ Trục đối xứng: x = -1

+ Giao điểm với trục tung tại gốc tọa độ.

+ Giao điểm với trục hoành tại O(0; 0) và M(-2; 0).

+ Bảng biến thiên:

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

* Hàm số y = (x + 2)(x+1) = x2 + 3x + 2 có đồ thị (C2) là parabol có:

+ Tập xác định D = R.

+ Đỉnh Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

+ Trục đối xứng: x = -3/2

+ Giao với trục tung tại D(0; 2)

+ Giao với trục hoành tại M(-2; 0) và E(-1; 0)

+ Bảng biến thiên

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

* Đồ thị:

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

* Tìm tọa độ giao điểm:

Cách 1: Dựa vào đồ thị hàm số:

Nhìn vào đồ thị thấy (C1) cắt (C2) tại A(1; 6) và B ≡ M(-2; 0)

Cách 2: Tính:

Hoành độ giao điểm của (C1) và (C2) là nghiệm của phương trình:

2x(x + 2) = (x + 2)(x + 1)

⇔ (x + 2).2x – (x + 2)(x + 1) = 0

⇔ (x + 2).(2x – x – 1) = 0

⇔ (x + 2).(x – 1) = 0

⇔ x = -2 hoặc x = 1.

+ x = -2 ⇒ y = 0. Ta có giao điểm B(-2; 0)

+ x = 1 ⇒ y = 6. Ta có giao điểm A(1; 6).

c)

+ Đồ thị hàm số y = ax2 + bx + c đi qua điểm A(1; 6) và B(-2; 0)

⇔ tọa độ A và B thỏa mãn phương trình y = ax2 + bx + c

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

+ Ta có bảng biến thiên của hàm số y = ax2 + bx + c:

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Nhận thấy y đạt giá trị lớn nhất bằng 8

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Thay b = 2 + a và c = 4 – 2a vào biểu thức 4ac – b2 = 32a ta được:

4.a.(4 – 2a) – (2 + a)2 = 32a

⇔ 16a – 8a2 – (a2 + 4a + 4) = 32a

⇔ 16a– 8a2 – a2 – 4a - 4 – 32a = 0

⇔ -9a2 - 20a - 4 = 0

⇔ a = -2 hoặc a = -2/9.

Nếu a = -2 ⇒ b = 0, c = 8, hàm số y = -2x2 + 8

Nếu a = -2/9 ⇒ b = 16/9, c = 40/9, hàm số Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10