K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2022

+) Tìm trên mạng thì đề thiếu xy + yz - zx = 7 

+) Nếu bổ sung đề: Tìm x; y ; z nguyên dương thì có thể làm như sau: 

Không mất tính tổng quát: g/s: 

x ≥ y ≥ z

Vì x2 + y2 + z2 = 14 => 

x 2 ≤ 14

⇒ x ≤ √ 14 < 4

  Vì x nguyên dương 

=> x  ∈ { 1; 2; 3}

+)Vớix=3=>\hept{y+z=3y2+z2=5⇒\hept{y+z=y2≤5

NV
26 tháng 9 2019

\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)=9\Rightarrow x+y+z\ge3\)

\(P=\sum\frac{x^2}{\sqrt{x^3+8}}=\sum\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}\ge\sum\frac{2x^2}{x^2-x+6}\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)

\(\Rightarrow P\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2+6-\left(x+y+z\right)+12}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}-1+1\)

\(\Rightarrow P\ge\frac{\left(x+y+z\right)^2+\left(x+y+z\right)-12}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}+1=\frac{\left(x+y+z-3\right)\left(x+y+z+4\right)}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}+1\)

Do \(x+y+z-3\ge0\Rightarrow P\ge1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

26 tháng 9 2019

Èo, thé này mà sang giờ em nghĩ mãi ko ra:(

4 tháng 4 2021

TH1: \(m=2\)

\(pt\Leftrightarrow-4x+5=0\Leftrightarrow x=\dfrac{5}{4}\)

\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán

TH2: \(m\ne2\)

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=m^2-\left(m-2\right)\left(m+3\right)>0\\\dfrac{2m}{m-2}>0\\\dfrac{m+3}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6-m>0\\\dfrac{2m}{m-2}>0\\\dfrac{m+3}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m< -3\\2< m< 6\end{matrix}\right.\)

Vậy \(m\in\left(-\infty;-3\right)\cup\left(2;6\right)\)

NV
18 tháng 9 2021

Sau vài phút cố gắng thì khẳng định đề bài của em bị sai

26 tháng 2 2021

Từ x + y  = 2 => x = 2 - y thay vào xy - z2 = 1

Ta có: \(\left(2-y\right)y-z^2=1\)

<=> \(z^2+y^2-2y+1=0\)

<=> \(z ^2+\left(y-1\right)^2=0\)

<=> \(\left\{{}\begin{matrix}z=0\\y=1\end{matrix}\right.\) => x = 2 - 1 = 1

Vậy x = y = 1 và z = 0

3 tháng 1 2021

1) Trong he toa do Oxy, cho tam giac ABC co A(2;2), B(-5;3), C(-2;4). Goi H (x;y) la hinh chieu cua dinh A len duong thang BC. Tinh gia tri cua bieu thuc P = x2 + y2

                                                   Giải

- H là hình chiếu của A lên BC nên ta có: \(\overrightarrow{AH}.\overrightarrow{BC}=0\)

=> 3.(x-2) + 1.(y-2) = 0 <=> 3x + y =8 (1) 

- H nằm trên đoạn BC nên : B,H,C thẳng hàng.

=> BH = kBC 

=> \(\dfrac{x+5}{3}=\dfrac{y-3}{1}=x-3y=-14\)(2)

Từ (1) và (2) ta có hệ phương trình, giải hệ ta được: x=1, y=5.

Suy ra : x^2 + y^2 = 26 chọn B.