K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

Từ \(a^2-b=b^2-c\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=b-c\)

\(\Leftrightarrow a+b=\frac{b-c}{a-b}\)

\(\Rightarrow a+b+1=\frac{b-c}{a-b}+1=\frac{a-c}{a-b}\)

Tương tự ta có:

\(\hept{\begin{cases}b+c+1=\frac{b-a}{b-c}\\c+a+1=\frac{c-b}{c-a}\end{cases}}\)

\(\Rightarrow\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)=\frac{a-c}{a-b}.\frac{b-a}{b-c}.\frac{c-b}{c-a}=-1\)

22 tháng 10 2019

Câu hỏi của Jungkookie - Toán lớp 7 - Học toán với OnlineMath

27 tháng 10 2019

Câu hỏi của CTV - Toán lớp 8 - Học toán với OnlineMath

27 tháng 9 2015

bạn sủa lại đề đi: z=(a-b+c)2+8ac

x+y+z=3(a-b+c)2+8ab+8bc-8ac

x+y+z=3(a2+b2+c2-2ab+2ac-2bc)+8ab+8bc-8ac

x+y+z=3a2+b2+3c2+2bc+2ab-2ac

         =(a+b)2+(b+c)2+(a-c)2+a2+b2+c>0

Vậy.../

 

25 tháng 6 2021

Ta có:\(a^2-b=b^2-c\)

\(\Leftrightarrow a^2-b^2=b-c\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=b-c\)

\(\Leftrightarrow a+b=\frac{b-c}{a-b}\)

\(\Leftrightarrow a+b+1=\frac{b-c}{a-b}+1\)

\(\Leftrightarrow a+b+1=\frac{a-c}{a-b}\)

Cmtt ta có:

\(\hept{\begin{cases}b^2-c=c^2-a\Leftrightarrow b+c+1=\frac{b-a}{b-c}\\c^2-a=a^2-b\Leftrightarrow c+a+1=\frac{c-b}{c-a}\end{cases}}\)

\(\Rightarrow\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)=\frac{a-c}{a-b}.\frac{b-c}{b-a}.\frac{c-b}{c-a}=-1\)

Cre:mạng 

2 tháng 10 2017

từ đề bài \(\Rightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(a-b\right)\left(c-a\right)}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\)

Tương tự : \(\hept{\begin{cases}\frac{b}{\left(c-a\right)^2}=\frac{-cb+c^2-a^2+ab}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\\\frac{c}{\left(a-b\right)^2}=\frac{-ac+a^2-b^2+bc}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\end{cases}}\)

Cộng vế với vế ta được : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\)

\(=\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ab-ac+a^2-b^2+bc}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}=0\)(đpcm)

2 tháng 10 2017

tôi lớp 7 mà