Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo ở đây:
xét các số thực a,b,c (a≠0) sao cho phương trình ax2+bx+c=0 có 2 nghiệm m, n thỏa mãn \(0\le m\le1;0\le m\le1\). tìm GTN... - Hoc24
Đầu tiên tiền điều kiện để phương trình bậc 2 có 2 nghiệm thuộc [0; 1] trước đi sẽ có điều kiện của a,b,c lúc đó thì giải bất như bài bất bình thường.
Chỉ biết phân tích mù mịt cho đẹp thôi chứ không biết đúng hay sai?
Ta có \(L=\left(3-\frac{b}{a}+\frac{c}{a}\right):\left(5-\frac{3b}{a}+\left(\frac{b}{a}\right)^2\right)\)(chia cả tử và mẫu cho a2 khác 0)
Theo hệ thức Vi - et, \(L=\frac{3+\left(x_1+x_2\right)+x_1x_2}{5+3\left(x_1+x_2\right)+\left(x_1+x_2\right)^2}\)
Theo giả thiết \(0\le x_1\le x_2\le2\)\(\Rightarrow\hept{\begin{cases}x_1^2\le x_1x_2\\x_2^2\le4\end{cases}}\)
\(\Rightarrow x_1^2+x_2^2\le x_1x_2+4\Leftrightarrow\left(x_1+x_2\right)^2\le3x_1x_2+4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4\le3x_1x_2\Leftrightarrow\left(x_1+x_2+2\right)\left(x_1+x_2-2\right)\le3x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2+5\right)\left(x_1+x_2-2\right)-3\left(x_1+x_2-2\right)\le3x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2+5\right)\left(x_1+x_2-2\right)\le3\left(x_1x_2+x_1+x_2-2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+3\left(x_1+x_2\right)-10\le3\left(x_1x_2+x_1+x_2-2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+3\left(x_1+x_2\right)+5\le3\left(x_1x_2+x_1+x_2+3\right)\)
Vì \(\left(x_1+x_2\right)^2+3\left(x_1+x_2\right)+5>0\)nên
\(L=\frac{3+\left(x_1+x_2\right)+x_1x_2}{5+3\left(x_1+x_2\right)+\left(x_1+x_2\right)^2}\ge\frac{1}{3}\)
Dấu "=" khi \(\hept{\begin{cases}x_1=0\\x_2=2\end{cases}}\)hoặc \(\hept{\begin{cases}x_1=2\\x_2=2\end{cases}}\)
Tham khảo:
Câu hỏi của Nguyễn Ngọc Ánh - Toán lớp 10 | Học trực tuyến
\(Q=\dfrac{2-\dfrac{c}{a}-\dfrac{2b}{a}+\left(\dfrac{b}{a}\right)\left(\dfrac{c}{a}\right)}{1-\dfrac{b}{a}+\dfrac{c}{a}}=\dfrac{2-mn+2\left(m+n\right)-mn\left(m+n\right)}{1+m+n+mn}\)
\(Q=\dfrac{\left(2-mn\right)\left(m+n+1\right)}{\left(m+1\right)\left(n+1\right)}\ge\dfrac{\left[8-\left(m+n\right)^2\right]\left(m+n+1\right)}{\left(m+n+2\right)^2}\)
Đặt \(m+n=t\Rightarrow0\le t\le2\)
\(Q\ge\dfrac{\left(8-t^2\right)\left(t+1\right)}{\left(t+2\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{\left(2-t\right)\left(4t^2+15t+10\right)}{4\left(t+2\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(t=2\) hay \(m=n=1\)
Thầy ơi sao bên này là (2-mn) qua bên kia lại là \(\left[8-\left(m+n\right)^2\right]\) , dưới mẫu là (m+1)(n+1) qua bên này là \(\text{(m+n+2)}^2\)