K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

22 tháng 11 2018

Đáp án A.

Phương pháp:

Từ  z = z ¯ + 4 - 3 i  tìm ra quỹ tích điểm M(x;y) biểu diễn cho số phức z = x + yi

Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(–1;1); B(2; –3) ta có: 

|z+1–i|+|z–2+3i| = MA + MB nhỏ nhất ó MA = MB

Cách giải: Gọi z = x + ui ta có:

Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(–1;1); B(2; –3) ta có: 

|z+1–i|+|z–2+3i| = MA + MB nhỏ nhất.

Ta có:  dấu bằng xảy ra ó MA = MB => M thuộc trung trực của AB.

Gọi I là trung điểm của AB ta có  và A B → = 3 ; - 4

Phương trình đường trung trực của AB là

Để (MA + MB)min ó Tọa độ điểm M là nghiệm của hệ phương trình

10 tháng 1 2019

Đáp án A.

Gọi M x , y  là điểm biểu diễn số phức z.

Từ giả thiết, ta có z − 4 − 3 i = 5 ⇔ x − 4 2 + y − 3 2 = 5 ⇒ M  thuộc đường tròn (C) tâm I 4 ; 3 ,  bán kính R = 5 .  Khi đó P = M A + M B ,  với A − 1 ; 3 , B 1 ; − 1 .

Ta có

P 2 = M A 2 + M B 2 + 2 M A . M B ≤ 2 M A 2 + M B 2 .

Gọi E 0 ; 1  là trung điểm của AB

⇒ M E 2 = M A 2 + M B 2 2 − A B 2 4 .

Do đó P 2 ≤ 4 M E 2 + A B 2  mà

M E ≤ C E = 3 5   s u y   r a   P 2 ≤ 4. 3 5 2 + 2 5 2 = 200.

Với C là giao điểm của đường thẳng EI

với đường tròn (C).

Vậy P ≤ 10 2 .  Dấu “=” xảy ra 

⇔ M A = M B M = C ⇒ M 6 ; 4 ⇒ a + b = 10.

30 tháng 7 2018

Chọn D.

7 tháng 12 2017

Đáp án A

13 tháng 12 2019

Đáp án A.

 

Áp dụng bđt Bunhiacopski:

P=6+4=10.

18 tháng 6 2019

Đáp án D

6 tháng 12 2018

Đáp án D

11 tháng 1 2018

Đáp án D.

Gọi   M a ; b là điểm biểu diễn số phức z = a + b i . Đặt I = 1 ; 1   , A 7 ; 9  và   B 0 ; 8

Ta xét bài toán: Tìm điểm M thuộc đường tròn   C có tâm I, bán kính   R = 5 sao cho biểu thức P = M A + 2 M B  đạt giá trị nhỏ nhất.

Trước tiên, ta tìm điểm K x ; y  sao cho  M A = 2 M K   ∀ M ∈ C   .

Ta có  

  M A = 2 M K ⇔ M A 2 = 4 M K 2 ⇔ M I → + I A → 2 = 4 M I → + I K → 2

⇔ M I 2 + I A 2 + 2 M I → . I A → = 4 M I 2 + I K 2 + 2 M I → . I K →

⇔ 2 M I → I A → − 4 I K → = 3 R 2 + 4 I K 2 − I A 2   *

(*) luôn đúng ∀ M ∈ C ⇔ I A → − 4 I K → = 0 → 3 R 2 + 4 I K 2 − I A 2 = 0 .

I A → − 4 I K → = 0 → ⇔ 4 x − 1 = 6 4 y − 1 = 8 ⇔ x = 5 2 y = 3

Thử trực tiếp ta thấy  K 5 2 ; 3    thỏa mãn 3 R 2 + 4 I K 2 − I A 2 = 0 .

Ta cos  M A + 2 M B = 2 M K + 2 M B = 2 M K + M B ≥ 2 K B   .

Vì B I 2 = 1 2 + 7 2 = 50 > R 2 = 25  nên B nằm ngoài (C).

Vì K I 2 = 3 2 2 + 2 2 < R 2 = 25  nên K nằm trong (C)  .

Dấu bằng trong bất đẳng thức trên xảy ra khi và chỉ khi M thuộc đoạn thẳng BK  . Do đó  M A + 2 M B  nhỏ nhất khi và chỉ khi M là giao điểm của (C) và đường thẳng BK.

Phương trình đường thẳng B K : 2 x + y − 8 = 0 .

Phương trình đường tròn C : x − 1 2 + y − 1 2 = 25 .

Tọa độ điểm M là nghiệm của hệ

2 x + y = 8 x − 1 2 + y − 1 2 = 25 ⇔ x = 1 y = 6

 hoặc x = 5 y = − 2 .

Thử lại thấy M 1 ; 6  thuộc đoạn BK.

Vậy  a = 1, b = 6 ⇒ a + b = 7   .