Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số ước số tự nhiên: \(\left(5+1\right)\left(3+1\right)\left(2+1\right)=72\)
Đáp án là C. Vì:
Gọi d là công bội của dãy cấp số nhân \((u_n) \)
⇒ \(u_n=d.u_{n-1}=d^2.u_{n-2}=...=d^{n-2}.u_2=d^{n-1}.u_1\)
Suy ra: \(u_5=d^3.u_2 \Rightarrow d^3=\dfrac{u_5}{u_2}=\dfrac{48}{6}=8 \Rightarrow d=2\)
Có: \(u_2=d.u_1 \Leftrightarrow u_1=\dfrac{u_2}{d}=\dfrac{6}{2}=3\)
Theo đề: \(u_1+u_2+...+u_n=381 \)
\(\Leftrightarrow u_1+d.u_1+d^2.u_1+...+d^{n-1}u_1=381\)
\(\Leftrightarrow u_1(1+d+d^2+...+d^{n-1})=381\)
Mặt khác: \(u_1(1+d+d^2+...+d^{n-1})=3.\dfrac{d^n-1}{d-1} =3.\dfrac{2^n-1}{2-1}=3.(2^n-1)\)
\(\Rightarrow 3.(2^n-1)=381 \Leftrightarrow 2^n-1=127 \Leftrightarrow 2^n=128=2^7 \Rightarrow n=7\).
Vậy n = 7 thuộc (6;11)
Theo đề, ta có:
\(\left\{{}\begin{matrix}u_{10}=48\\u_{18}=88\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u_1+9d=48\\u_1+17d=88\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-8d=-40\\u_1+9d=48\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}d=5\\u_1=48-9d=48-9\cdot5=3\end{matrix}\right.\)
\(u_{100}=u_1+99d=3+99\cdot5=498\)
Bài 1:
Số cách đi: \(6.4.\left(6-1\right).\left(4-1\right)=360\)
Bài 2: Gọi số đó là \(\overline{abcd}\)
Số cách lập 4 chữ số lẻ bất kì: d có 3 cách chọn, a có 4, b có 4, c có 3 \(\Rightarrow3.4.4.3=144\) số
Số cách lập số lẻ ko có mặt số 3: d có 2 cách, a có 3 cách, b có 3 cách, c có 2 cách \(\Rightarrow2.3.3.2=36\) số
\(\Rightarrow\) Có \(144-36=108\) số thỏa mãn
Chọn đáp án D.
Ta có: u 1 = 3 v à u 9 = 768 nên 768 = 3 . q 8
Do đó u 5 = u 1 . q 4 = 48 .