K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2018

1) đặc : \(f\left(x\right)=y=cot4x\)

điều kiện xác định : \(sin4x\ne0\Leftrightarrow4x\ne k\pi\Leftrightarrow x\ne\dfrac{k\pi}{4}\)

\(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=cot\left(-4x\right)=-cot4x=-f\left(x\right)\)

\(\Rightarrow\) hàm này là hàm lẽ

2) đặc : \(f\left(x\right)=y=\left|cotx\right|\)

điều kiện xác định : \(sinx\ne0\Leftrightarrow x\ne k\pi\)

\(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=\left|cot\left(-x\right)\right|=\left|-cotx\right|=\left|cotx\right|=f\left(x\right)\)

\(\Rightarrow\) hàm này là hàm chẳn

3) đặc : \(f\left(x\right)=y=1-sin^2x=cos^2x\)

điều kiện xác định : \(D=R\)

\(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=cos^2\left(-x\right)=cos^2x=f\left(x\right)\)

\(\Rightarrow\) hàm này là hàm chẳn

4) đặc : \(f\left(x\right)=y=sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{sinx+cosx}{\sqrt{2}}\)

điều kiện xác định : \(D=R\)

\(\Rightarrow x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=\dfrac{sin\left(-x\right)+cos\left(-x\right)}{\sqrt{2}}=\dfrac{-sinx+cosx}{\sqrt{2}}\ne f\left(x\right);-f\left(x\right)\)

\(\Rightarrow\) hàm này là hàm không chẳn không lẽ

mấy bài còn lại bn làm tương tự cho quen nha

NV
22 tháng 3 2021

a.

\(y'=\dfrac{3}{cos^2\left(3x-\dfrac{\pi}{4}\right)}-\dfrac{2}{sin^2\left(2x-\dfrac{\pi}{3}\right)}-sin\left(x+\dfrac{\pi}{6}\right)\)

b.

\(y'=\dfrac{\dfrac{\left(2x+1\right)cosx}{2\sqrt{sinx+2}}-2\sqrt{sinx+2}}{\left(2x+1\right)^2}=\dfrac{\left(2x+1\right)cosx-4\left(sinx+2\right)}{\left(2x+1\right)^2}\)

c.

\(y'=-3sin\left(3x+\dfrac{\pi}{3}\right)-2cos\left(2x+\dfrac{\pi}{6}\right)-\dfrac{1}{sin^2\left(x+\dfrac{\pi}{4}\right)}\)

5 tháng 9 2017

1/ mình giải ở bài kia rồi

Bạn viết đề rõ ràng hơn đi

VD: 1/y=\(\dfrac{7sin\left(x-\dfrac{\Pi}{5}\right)}{cos\left(x-\Pi\right)}\)

6 tháng 8 2021

1. Hàm số xác định `<=> 1-cosx \ne 0<=>cosx \ne 1<=>x \ne k2π`

Vì: `1+cosx >=0 forallx ; 1-cosx >=0 forall x`

2. Hàm số xác định `<=> sin^2x \ne cos^2x <=> (1-cos2x)/2 \ne (1+cos2x)/2`

`<=>cos2x \ne 0<=> 2x \ne π/2+kπ <=> x \ne π/4+kπ/2`

3. Hàm số xác định `<=> cos2x \ne 0<=> x \ne π/4+kπ/2 (k \in ZZ)`.

14 tháng 8 2021

Bạn cho mình hỏi tại sao x khác k2\(\pi\) là lý thuyết ở đoạn nào thế ạ?

NV
2 tháng 1

Coi như tất cả các biểu thức cần tính đạo hàm đều xác định.

1.

\(y'=2sin\sqrt{4x+3}.\left(sin\sqrt{4x+3}\right)'=2sin\sqrt{4x+3}.cos\sqrt{4x+3}.\left(\sqrt{4x+3}\right)'\)

\(=sin\left(2\sqrt{4x+3}\right).\dfrac{4}{2\sqrt{4x+3}}=\dfrac{2sin\left(2\sqrt{4x+3}\right)}{\sqrt{4x+3}}\)

2.

\(y'=3x^3+\dfrac{17}{x\sqrt{x}}\)

3.

\(y'=\dfrac{1}{2\sqrt{\dfrac{sin4x}{cos\left(x^2+2\right)}}}.\left(\dfrac{sin4x}{cos\left(x^2+2\right)}\right)'\)

\(=\dfrac{1}{2\sqrt{\dfrac{sin4x}{cos\left(x^2+2\right)}}}.\dfrac{4cos4x.cos\left(x^2+2\right)+2x.sin4x.sin\left(x^2+2\right)}{cos^2\left(x^2+2\right)}\)

NV
2 tháng 1

4.

\(y'=-\dfrac{\left(\sqrt{sin^2\left(6-x\right)+4x}\right)'}{sin^2\left(6-x\right)+4x}=-\dfrac{\left[sin^2\left(6-x\right)+4x\right]'}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}\)

\(=-\dfrac{2sin\left(6-x\right).\left[sin\left(6-x\right)\right]'+4}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}=-\dfrac{-2sin\left(6-x\right).cos\left(6-x\right)+4}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}\)

\(=\dfrac{sin\left(12-2x\right)-4}{2\sqrt{\left[sin^2\left(6-x\right)+4x\right]^3}}\)

5.

\(y'=sin^2\left(\dfrac{2x-1}{4-x}\right)+2x.sin\left(\dfrac{2x-1}{4-x}\right).\left[sin\left(\dfrac{2x-1}{4-x}\right)\right]'\)

\(=sin^2\left(\dfrac{2x-1}{4-x}\right)+2x.sin\left(\dfrac{2x-1}{4-x}\right).cos\left(\dfrac{2x-1}{4-x}\right).\left(\dfrac{2x-1}{4-x}\right)'\)

\(=sin^2\left(\dfrac{2x-1}{4-x}\right)+x.sin\left(\dfrac{4x-2}{4-x}\right).\dfrac{7}{\left(4-x\right)^2}\)

16 tháng 11 2018

+ Xét hàm số  y= f(x) = cos3x

TXĐ: D =R

Với mọi x ∈ D , ta có: - x ∈ D  và

   f( -x) = cos( - 3x) = cos3x = f(x)

Do đó, y= cos 3x là hàm chẵn trên tập xác định của nó.

+ Xét hàm y= g(x)= sin(x2 + 1)

TXĐ: D= R

Với mọi x ∈ D , ta có: - x ∈ D  và

 g( -x)= sin[ (-x)2 +1]= sin( x2+1)= g(x)

    Do đó: y= sin( x2 +1)  là hàm chẵn trên R.

    + Xét hàm số y= h( x)= tan2x .

    TXĐ: 

Với mọi x ∈ D , ta có: - x ∈ D  và

    h( -x)= tan2 (-x)= (- tanx)2 = tan2 x=  h(x)

Do đó y= tan2x là hàm số chẵn trên D.

+ Xét hàm số y= t(x)= cotx.

    TXĐ:  

Với mọi x ∈ D , ta có: - x ∈ D  và t(-x)= cot(-x) = - cotx = - t(x)

Do đó:  y= cotx là hàm số lẻ trên D.

Vậy (1); (2); (3) là các hàm số chẵn

Đáp án C

22 tháng 2 2018

Đáp án C.

+ Xét hàm y = f(x) = cos 3x

TXĐ: D = R

Với mọi x ∈ D, ta có: -x ∈ D và f(-x) = cos (-3x) = cos 3x = f(x)

Do đó, y = f(x) = cos 3x  là hàm chẵn trên tập xác định của nó.

+ Xét hàm y = g(x) =  sin (x2 + 1)

TXĐ: D = R

Với mọi x ∈ D, ta có: -x ∈ D  và g(-x) = sin ((-x)2 + 1) = sin (x2 + 1) = g(x)

Do đó: y = g(x) = sin (x2 + 1) là hàm chẵn trên R.

+ Xét hàm y = h(x) = tan2 x

TXĐ: D = R\{π/2 + k2π, k ∈ Z)

Với mọi x ∈ D, ta có: -x ∈ D  và h(-x) = tan2 (-x) = tan2 x = h(x)

Do đó: y = h(x) = tan2 x  là hàm số chẵn trên D

+ Xét hàm y = t(x) = cot x.

TXĐ: D = R\{kπ, k ∈ Z)

Với mọi x ∈ D, ta có: -x ∈ D và t(-x) = cot (-x) = -cot x = -t(x)

Do đó: y = t(x) = cot x là hàm số lẻ trên D.