Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VP=\(A^2X^2+B^2Y^2+C^2Z^2+A^2Y^2+B^2X^2+A^2Z^2+C^2X^2+B^2Z^2+C^2Y^2\)
=\(A^2\left(X^2+Y^2+Z^2\right)+B^2\left(X^2+Y^2+Z^2\right)+C^2\left(X^2+Y^2+Z^2\right)\)
=\(\left(X^2+Y^2+Z^2\right)\left(A^2+B^2+C^2\right)\)
\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
\(\Rightarrow\frac{acy-bcx}{c^2}=\frac{bcx-abz}{b^2}=\frac{abz-acy}{a^2}=\frac{0}{a^2+b^2+c^2}=0\)
\(\Rightarrow\hept{\begin{cases}ay-bx=0\\cx-az=0\\bz-cy=0\end{cases}}\)
\(\Rightarrow\left(ay-bx\right)^2+\left(cx-az\right)^2+\left(bz-ay\right)^2=0\)
\(\Rightarrow a^2y^2-2axby+b^2x^2+a^2z^2-2axcz+c^2x^2+b^2z^2-2bycz\)
\(+c^2y^2=0\)
\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)
\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)
Phương Ann Nhã Doanh Đinh Đức Hùng Mashiro Shiina
Nguyễn Thanh Hằng Nguyễn Huy Tú Lightning Farron
Akai Haruma Võ Đông Anh Tuấn
mấy anh chị cm cho e thêm cái : \(\dfrac{ay+bx}{c}=\dfrac{bz+cy}{a}=\dfrac{cx+az}{b}\)
Ta có:
\(X-A=by+cz-cy-bz=\left(b-c\right)y+\left(c-b\right)z\)\(=\)\(\left(b-c\right)\left(y-z\right)\)
\(X-B=ax+by-bx-ay=\left(a-b\right)x+\left(b-a\right)y\)\(=\)\(\left(a-b\right)\left(x-y\right)\)
\(X-C=ax+cz-cx-az=\left(a-c\right)x+\left(c-a\right)z\)\(=\)\(\left(a-c\right)\left(x-z\right)\)
\(Y-A=cx+ay-ax-cy=\left(c-a\right)x+\left(a-c\right)y\)\(=\)\(\left(c-a\right)\left(x-y\right)\)
\(Y-B=cx+bz-bx-cz=\left(c-b\right)x+\left(b-c\right)z\)\(=\)\(\left(c-a\right)\left(x-z\right)\)
\(Y-C=zy+bz-by-az=\left(a-b\right)y+\left(b-a\right)z\)\(=\)\(\left(a-b\right)\left(y-z\right)\)
\(Z-A=bx-az-ax-bz=\left(b-a\right)x+\left(a-b\right)z\)\(=\)\(\left(b-a\right)\left(x-z\right)\)
\(Z-B=cy+az-ay-cz=\left(c-a\right)y+\left(a-c\right)z\)\(=\)\(\left(c-a\right)\left(y-z\right)\)
\(Z-C=bx+cy-cx-by=\left(b-c\right)x+\left(c-b\right)y\)\(=\)\(\left(b-c\right)\left(x-y\right)\)
Từ đó có:
\(\left(X-A\right)\left(X-B\right)\left(X-C\right)=\left(b-c\right)\left(a-b\right)\left(a-c\right)\left(y-z\right)\left(x-y\right)\left(x-z\right)\)
\(\left(Y-A\right)\left(Y-B\right)\left(Y-C\right)=\left(c-a\right)\left(c-b\right)\left(a-b\right)\left(x-y\right)\left(x-z\right)\left(y-z\right)\)
\(\left(Z-A\right)\left(Z-B\right)\left(Z-C\right)=\left(b-a\right)\left(c-a\right)\left(b-c\right)\left(x-z\right)\left(y-z\right)\left(x-z\right)\)
Ta thấy , vế phải của ba đẳng thức trên là tích của 6 thừa số. Các thừa số đều có mặt trong các tích nếu ta áp dụng quy tắc đổi dấu
Bài 3: y hệt bài mình đã từng đăng Câu hỏi của Thắng Nguyễn - Toán lớp 9 - Học toán với OnlineMath- trước mình có ghi lời giải mà lâu ko xem giờ quên r` :)
1) Đặt n+1 = k^2
2n + 1 = m^2
Vì 2n + 1 là số lẻ => m^2 là số lẻ => m lẻ
Đặt m = 2t+1
=> 2n+1 = m^2 = (2t+1)^2
=> 2n+1 = 41^2 + 4t + 1
=> n = 2t(t+1)
=> n là số chẵn
=> n+1 là số lẻ
=> k lẻ
+) Vì k^2 = n+1
=> n = (k-1)(k+1)
Vì k -1 và k+1 là 2 số chẵn liên tiếp
=> (k+1)(k-1) chia hết cho *
=> n chia hết cho 8
+) k^2 + m^2 = 3a + 2
=> k^2 và m^2 chia 3 dư 1
=> m^2 - k^2 chia hết cho 3
m^2 - k^2 = a
=> a chia hết cho 3
Mà 3 và 8 là 2 số nguyên tố cùng nhau
=> a chia hết cho 24
lần lượt nhân c,b,a vào tỉ số đầu rồi rút gọn đc ay-bx=cx-az=bz-cy => x/a=y/b=z/c(1)
Theo bđt bunhi thì dấu "=" xảy ra khi x/a=y/b=z/c ,tức là (1) đúng
a) Sửa đề: \(\left(ax+by+cx\right)^2+\left(bx-ay\right)^2+\left(cy-bz\right)^2+\left(az-cx\right)^2\)
= a2x2 + b2y2 + c2x2 + 2axby + 2bycz + 2axcz + b2x2 - 2bxay + a2y2 + c2y2 - 2cybz + b2z2 + a2z2 - 2azcx + c2x2
= a2x2 + b2y2 + c2x2 + b2x2 + a2y2 + c2y2 + b2z2 + a2z2 + c2x2
= a2(x2+y2+z2) + b2(x2+y2+z2) + c2(x2+y2+z2)
= (a2+b2+c2)(x2+y2+z2) (đpcm)
b) Đặt x = b; y = c; z = a, ta có:
\(\left(ay+bz+cx\right)^2+\left(az-by\right)^2+\left(bx-cz\right)^2+\left(cy-ax\right)^2\)
= a2y2 + b2z2 + c2x2 + 2aybz + 2bzcx + 2aycx + a2z2 - 2azby + b2y2 + b2x2 - 2bxcz + c2z2 + c2y2 - 2cyax + a2x2
= a2y2 + b2z2 + c2x2 + a2z2 + b2y2 + b2x2 + c2z2 + c2y2 + a2x2
= (a2+b2+c2)(x2+y2+z2)
Thay b = x, c = y, a = z, ta có:
(a2+b2+c2)(x2+y2+z2) = (a2+b2+c2)2 (đpcm)
Ta có:
\(X-A\)\(=\)\(by+cz-cy-bz=\left(b-c\right)y+\left(c-b\right)z=\left(b-c\right)\left(y-z\right)\)
\(X-B\)\(=\)\(ax+by-bx-ay=\left(a-b\right)x+\left(b-a\right)y=\left(a-b\right)\left(x-y\right)\)
\(X-C\)\(=\)\(ax+cz-cx-az=\left(a-c\right)x+\left(c-a\right)z=\left(a-c\right)\left(x-z\right)\)
\(Y-A\)\(=\)\(cx+ay-ax-cy=\left(c-a\right)x+\left(a-c\right)y=\left(c-a\right)\left(x-y\right)\)
\(Y-B\)\(=\)\(cx+bz-bx-cz=\left(c-b\right)x+\left(b-c\right)z=\left(c-a\right)\left(x-z\right)\)
\(Y-C\)\(=\)\(zy+bz-by-az=\left(a-b\right)y+\left(b-a\right)z=\left(a-b\right)\left(y-z\right)\)
\(Z-A\)\(=\)\(bx+az-ax-bz=\left(b-a\right)x+\left(a-b\right)z=\left(b-a\right)\left(x-z\right)\)
\(Z-B\)\(=\)\(cy+az-ay-cz=\left(c-a\right)y+\left(a-c\right)z=\left(c-a\right)\left(y-z\right)\)
\(Z-C\)\(=\)\(bx+cy-cx-by=\left(b-c\right)x+\left(c-b\right)y=\left(b-c\right)\left(x-y\right)\)
Từ đó có:
\(\left(X-A\right)\left(X-B\right)\left(X-C\right)=\left(b-c\right)\left(a-b\right)\left(a-c\right)\left(y-z\right)\left(x-y\right)\left(x-z\right)\)
\(\left(Y-A\right)\left(Y-B\right)\left(Y-C\right)=\left(c-a\right)\left(c-b\right)\left(a-b\right)\left(x-y\right)\left(x-z\right)\left(y-z\right)\)
\(\left(Z-A\right)\left(Z-B\right)\left(Z-C\right)=\left(b-a\right)\left(c-a\right)\left(b-c\right)\left(x-z\right)\left(y-z\right)\left(x-z\right)\)
Ta thấy , vế phải của ba đẳng thức trên là tích của sáu thừa số . Các thừa số đều có mặt trong các tích nếu ta áp dụng quy tắc đổi dấu
có cần giải ra không