Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Kết quả của phép thử là một cặp số (a;b) trong đó a, b lần lượt là số chấm xuất hiện trên con xúc xắc thứ nhất và thứ hai, suy ra:
\(B = \left\{ {(1;1),(2;2),(3;3),(4;4),(5;5),(6;6)} \right\}\)
\(C = \left\{ {(2;1),(4;2),(6;3)} \right\}\)
b) Từ tập hợp mô tả biến cố ở câu a) ta có:
Có 6 kết quả thuận lợi cho biến cố B
Có 3 kết quả thuận lợi cho biến cố C
![](https://rs.olm.vn/images/avt/0.png?1311)
+) Không gian mẫu của phép thử là: \(\Omega {\rm{ }} = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}.\) Vậy \(n\left( \Omega \right) = 4\)
+) Các kết quả thuận lợi cho biến cố A là: \(A{\rm{ }} = {\rm{ }}\left\{ {SS;{\rm{ }}NN} \right\}\). Vậy \(n\left( A \right) = 2\)
+) Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\Omega = \left\{ {TGT;TTG;TTT;TGG;GGT;GTG;GTT;GGG} \right\}\) nên suy ra \(n\left( \Omega \right) = 8\).
a) Ta có \(A = \left\{ {GGT;GTG;GTT;GGG} \right\}\). Suy ra \(n\left( A \right) = 4\).
Từ đó, \(P\left( A \right) = \frac{4}{8} = \frac{1}{2}\).
b) Gọi biến cố \(B\): “Có ít nhất một con trai”.
Ta có \(B = \left\{ {TGT;TTG;TTT;TGG;GGT;GTG;GTT} \right\}\). Suy ra \(n\left( B \right) = 7\).
Từ đó, \(P\left( B \right) = \frac{7}{8}\).
![](https://rs.olm.vn/images/avt/0.png?1311)
Không gian mẫu trong trò chơi trên là tập hợp \(\Omega = \left\{ {(i,j)|i,j = 1,2,3,4,5,6} \right\}\)trong đó (i,j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”. Vậy \(n(\Omega ) = \;36.\)
a) Gọi A là biến cố “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”.
Các kết quả có lợi cho A là: (4; 6) (5;5) (5;6) (6; 4) (6;5) (6;6). Vậy \(n(A) = \;6.\)
Vậy xác suất của biến cố A là \(P(A) = \;\frac{{n(A)}}{{n(\Omega )}} = \frac{6}{{36}} = \frac{1}{6}.\)
b) Gọi B là biến cố “Mặt 1 chấm xuất hiện ít nhất một lần”.
Các kết quả có lợi cho B là: (1; 1) (1 : 2) (1 : 3) (1; 4) (1;5) (1; 6) (2 ; 1) (3;1) (4; 1) (5;1) (6;1). Vậy \(n(B) = \;11.\)
Vậy xác suất của biến cố B là: \(P(B) = \;\frac{{n(B)}}{{n(\Omega )}} = \frac{{11}}{{36}}.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Không thể tính n(\(\Omega \)), n(F) và n(G) bằng cách liệt kê ra hết các phần tử của \(\Omega \), F và G rồi kiểm đếm.
![](https://rs.olm.vn/images/avt/0.png?1311)
+) Không gian mẫu trong trò chơi trên là tập hợp \(\Omega = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}\). Vậy \(n\left( \Omega \right) = 4\)
+) Gọi A là biến cố “Có ít nhất một lần xuất hiện mặt sấp”
+) Các kết quả thuận lợi cho biến cố A là: \(SS;{\rm{ }}SN;{\rm{ }}NS\)tức là \(A = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS} \right\}\). Vậy \(n\left( A \right) = 3\).
+) Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{3}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
+) Không gian mẫu trong trò chơi trên là tập hợp \(\Omega = {\rm{ }}\left\{ {\left( {i,j} \right){\rm{ | }}i,{\rm{ }}j{\rm{ }} = {\rm{ }}1,{\rm{ }}2,{\rm{ }}3,{\rm{ }}4,{\rm{ }}5,{\rm{ }}6} \right\}\) trong đó (i,j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”. Vậy \(n\left( \Omega \right) = 36\)
+) Gọi A là biến cố “Số chấm trong hai lần gieo đều là số nguyên tố”.
Ta có các kết quả thuận lợi cho biến cố A là: (2 ; 2) (2;3) (2;5) (3; 2) (3;3) (3;5) (5;2) (5;3) (5;5). Vậy \(n\left( A \right) = 9\)
+) Vậy xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{9}{{36}} = \frac{1}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Sự kiện “Số chấm trong lần gieo thứ hai là 6” tương ứng với biến cố nào của phép thử
\(A{\rm{ }} = {\rm{ }}\left\{ {\left( {{\rm{1 }};{\rm{ 6}}} \right);{\rm{ }}\left( {{\rm{2 }};{\rm{ 6}}} \right);{\rm{ }}\left( {{\rm{3 }};6} \right);{\rm{ }}\left( {{\rm{4 }};{\rm{ 6}}} \right);{\rm{ }}\left( {{\rm{5 }};{\rm{ 6}}} \right);{\rm{ }}\left( {6{\rm{ }};{\rm{ }}6} \right)} \right\}\)
b) Biến cố E={(5;6); 6;5); 6;6)} của không gian mẫu (trong phép thử trên) được phát biểu dưới dạng mệnh đề nêu sự kiện là: “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 11”
Gọi n là số trẻ mới sơ sinh. Vận dụng ý nghĩa thực tế của xác suất, ta có \(n.0,488 \approx 10000\).
Vậy \(n \approx 20492\)(trẻ sơ sinh). Do đó, trong 10000 bé gái thì có khoảng \(20492 - 10000 = 10492\)(bé trai).