Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án D
Do tính đối xúng → G nằm trên đường thẳng OO' về phía đầy
Trọng tâm của đĩa nguyên vẹn là tâm O; trọng tâm của đĩa bị khoét là O'
Giả sử ta khoét thêm một lỗ tròn bán kính R/2 nữa đối xứng với lỗ tròn đã khoét lúc đầu (H.III.6G)
Gọi P → là trọng lượng của đĩa bán kính R khi chưa bị khoét, P 1 → là trọng lượng của đĩa nhỏ có bán kính R/2 và P 2 → là trọng lượng của phần đĩa còn lại sau hai lần khoét, ta có:
Do tính chất đối xứng, trọng tâm phần đĩa còn lại sau hai lần khoét thì trùng với tâm O của đĩa khi chưa khoét, còn trọng tâm của đĩa nhỏ mà ta giả sử khoét thêm thì ở tâm O 1 của nó. Gọi G là trọng tâm của đĩa sau khi bị khoét một lỗ tròn. Ta có hệ phương trình
Giải ra ta được: G O 1 = R/3 và GO = R/6
Gọi x là khoảng cách từ tâm hình tròn lớn O đến trọng tâm phần còn lại O1.
Theo quy tắc hợp lực song song:
Chọn A.
Phần khoét đi, nếu đặt lại chỗ cũ sẽ hút m lực hấp dẫn:
Lực hấp dẫn do cả quả cầu đặc tác dụng lên m:
Do quả cầu đồng chất nên:
Thay vào (*) rồi biến đổi ta được
Áp dụng phương pháp tọa độ :
x G = y G = m a 4 + m a 4 + m 3 a 4 3 m = 5 a 12
Đáp án A.
Phần khoát đi, nếu đặt lại chỗ cũ sẽ hút m lực hấp dẫn: F 1 = G M k m ( d - R 2 ) 2
Lực hấp dẫn do cả quả cầu đặc tác dụng lên m: F 2 = G M m d 2
Suy ra:
Ta chia bản mỏng ra thành hai phần ABCD và EFGH, mỗi phần có dạng hình chữ nhật. Trọng tâm của các phần này nằm tại O1, O2 (giao điểm các đường chéo của hình chữ nhật). Gọi trọng tâm của bản là O, O sẽ là điểm đặt của hợp các trọng lực của hai phần hình chữ nhật. (hình 84)
Theo qui tắc hợp lực song song cùng chiều:
Chọn B.
Ta chia bản mỏng ra thành hai phần ABCD và EFGH, mỗi phần có dạng hình chữ nhật. Trọng tâm của các phần này nằm tại O 1 , O 2 (giao điểm các đường chéo của hình chữ nhật). Gọi trọng tâm của bản là O, O sẽ là điểm đặt của hợp các trọng lực P ⇀ 1 , P 2 ⇀ của hai phần hình chữ nhật.
Theo qui tắc hợp lực song song cùng chiều:
Vì bản đồng chất nên khối lượng tỉ lệ với diện tích :
Đồng thời: O 1 O 2 = O O 1 + O O 2 = 60/2 = 30cm.
Từ các phương trình trên, ta suy ra:
O O 1 = 18,75cm; O O 2 = 11,25cm.
Vậy trọng tâm O nằm trên trục đối xứng, cách đáy: 11,25 + 25 = 36,25cm.
Do tính đối xứng G nằm trên đường thẳng OO’ về phía đầy.
Trọng tâm của đĩa nguyên vẹn là tâm O; trọng tâm của đĩa bị khoét là O’.
P → là hợp lực của hai lực P → 1 , P → 2 .
O G O O ' = P 2 P 1 = m 2 m 1 = V 2 V 1 = S 2 S 1 = π R 2 4 3 π R 2 4 = 1 3 ⇒ O G = R 6