K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Tọa độ đỉnh \(\left(\dfrac{-b}{2a},\dfrac{-\Delta}{4a}\right)\)

Trục đối xứng \(x=\dfrac{-b}{2a}\)

10 tháng 5 2019

Parabol y = ax2 + bx + c có:

+ Tọa độ đỉnh D là:

Giải bài 6 trang 50 sgk Đại số 10 | Để học tốt Toán 10

+ Phương trình trục đối xứng là:

Giải bài 6 trang 50 sgk Đại số 10 | Để học tốt Toán 10

20 tháng 12 2023

loading...  loading...  loading...  loading...  

20 tháng 12 2019

Ở đây a = 2; b = -2; c = -2. Ta có Δ   =   ( - 1 ) 2   -   4 . 2 . ( - 2 )   =   17

    Trục đối xứng là đường thẳng x = 1/4; đỉnh I(1/4; -17/8) giao với trục tung tại điểm (0; -2).

    Để tìm giao điểm với trục hoành ta giải phương trình

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Vậy các giao điểm với trục hoành là

Giải sách bài tập Toán 10 | Giải sbt Toán 10

26 tháng 6 2019

Trục đối xứng x = -1/4; đỉnh I(-1/4; -17/8) giao với trục tung tại điểm (0;2); giao với trục hoành tại các điểm

Giải sách bài tập Toán 10 | Giải sbt Toán 10

a: Trục đối xứng là x=-(-1)/4=1/4

Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=-\dfrac{\left(-1\right)^2-4\cdot2\cdot\left(-2\right)}{4\cdot2}=-\dfrac{17}{8}\end{matrix}\right.\)

Thay y=0 vào (P), ta được:

2x^2-x-2=0

=>\(x=\dfrac{1\pm\sqrt{17}}{4}\)

thay x=0 vào (P), ta được:

y=2*0^2-0-2=-2

b: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-\left(-6\right)}{2\cdot\left(-3\right)}=\dfrac{6}{-6}=-1\\y=-\dfrac{\left(-6\right)^2-4\cdot\left(-3\right)\cdot4}{4\cdot\left(-3\right)}=7\end{matrix}\right.\)

=>Trục đối xứng là x=-1

Thay y=0 vào (P), ta được:

-3x^2-6x+4=0

=>3x^2+6x-4=0

=>\(x=\dfrac{-3\pm\sqrt{21}}{3}\)

Thay x=0 vào (P), ta được:

y=-3*0^2-6*0+4=4

c: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-\left(-1\right)}{2\cdot\left(-2\right)}=\dfrac{1}{-4}=\dfrac{-1}{4}\\y=-\dfrac{\left(-1\right)^2-4\cdot\left(-2\right)\cdot2}{4\cdot\left(-2\right)}=\dfrac{17}{8}\end{matrix}\right.\)

=>Trục đối xứng là x=-1/4

Thay y=0 vào (P), ta được:

-2x^2-x+2=0

=>2x^2+x-2=0

=>\(x=\dfrac{-1\pm\sqrt{17}}{4}\)

Thay x=0 vào (P), ta được:

y=-2*0^2-0+2=2

22 tháng 11 2023

Sửa đề: (P): \(y=x^2+5x-6\)

Tọa độ đỉnh của (P) là:

\(\left\{{}\begin{matrix}x=\dfrac{-b}{2a}=-\dfrac{5}{2}\\y=-\dfrac{\text{Δ}}{4a}=-\dfrac{5^2-4\cdot1\cdot\left(-6\right)}{4\cdot1}=-\dfrac{25+24}{4}=-\dfrac{49}{4}\end{matrix}\right.\)

=>Trục đối xứng của (P) là \(x=-\dfrac{5}{2}\)

Tọa độ giao điểm của (P) với trục Ox sẽ là nghiệm của hệ phương trình sau đây:

\(\left\{{}\begin{matrix}x^2+5x-6=0\\y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x+6\right)\left(x-1\right)=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{-6;1\right\}\\y=0\end{matrix}\right.\)

Vậy: Tọa độ các giao điểm của (P) với trục Ox là A(-6;0) và B(1;0)

NV
12 tháng 8 2021

Đề bài thiếu, không thể xác định chính xác (P) khi chỉ biết đỉnh

5 tháng 6 2017

Điều kiện để (P): \(y=ax^2+bx+c\) cắt trục hoành tại hai điểm phân biệt là \(\Delta>0\).
Gọi \(x_1;x_2\) là hoành độ của hai giao điểm. Ta có:
\(x_{1,2}=\dfrac{-b\pm\sqrt{\Delta}}{2a}\);
Tọa độ giao điểm là:
\(A\left(\dfrac{-b+\sqrt{\Delta}}{2a};0\right)\); \(A\left(\dfrac{-b-\sqrt{\Delta}}{2a};0\right)\).