Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
0<x<171
nên 0<3n^2-2n+1<342
=>3n^2-2n+1<342
=>3n^2-2n-341<0
=>\(-\dfrac{31}{3}< n< 11\)
mà n là số nguyên dương
nên \(n\in\left\{1;2;...;9;10\right\}\)
\(\Leftrightarrow2x^4-10x^3+\left(m+12\right)x^2-4mx-m^2=0\) có 3 nghiệm
\(\Leftrightarrow\left(x^2-2x+m\right)\left(2x^2-6x-m\right)=0\) có 3 nghiệm
Xét 2 pt: \(x^2-2x+m=0\) (1) và \(2x^2-6x-m=0\) (2)
Để pt đã cho có 3 nghiệm thì:
TH1: (1) có 2 nghiệm pb và (2) có nghiệm kép khác 2 nghiệm của (1)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'_1=1-m>0\\\Delta'_2=9+2m=0\end{matrix}\right.\) \(\Rightarrow m=-\frac{9}{2}\)
Thay \(m=-\frac{9}{2}\) vào (1) thấy 2 nghiệm của (1) thỏa mãn khác nghiệm của (2)
TH2: (1) có nghiệm kép và (2) có 2 nghiệm pb khác nghiệm của (1)
\(\Leftrightarrow\left\{{}\begin{matrix}1-m=0\\9+2m>0\end{matrix}\right.\) \(\Rightarrow m=1\)
Thay \(m=1\) vào (2) ta cũng thấy thỏa mãn
TH3: \(\left\{{}\begin{matrix}\Delta'_1=1-m>0\\\Delta'_2=9+2m>0\\\text{(1) và (2) có đúng 1 nghiệm chung}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\frac{9}{2}< m< 1\\\text{(1) và (2) có đúng 1 nghiệm chung}\end{matrix}\right.\)
Gọi \(x_0\) là nghiệm chung của (1) và (2)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0^2-2x_0+m=0\\2x_0^2-6x_0-m=0\end{matrix}\right.\) \(\Rightarrow3x_0^2-8x_0=0\)
\(\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=\frac{8}{3}\end{matrix}\right.\)
- Với \(x_0=0\Rightarrow m=0\)
- Với \(x_0=\frac{8}{3}\Rightarrow m=-\frac{16}{9}\)
Vậy \(m=\left\{-\frac{9}{2};1;0;-\frac{16}{9}\right\}\)
Có đúng 1 giá trị nguyên của m là \(m=1\) thỏa mãn thuộc (0;10)
\(x^4-16\left(x^2-1\right)=0\Leftrightarrow x^4-16x^2+16=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=8+4\sqrt{3}\\x^2=8-4\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow A=\left\{-\sqrt{6}-\sqrt{2};\sqrt{2}-\sqrt{6};\sqrt{6}-\sqrt{2};\sqrt{2}+\sqrt{6}\right\}\)
\(2x\le9\Rightarrow x\le\frac{9}{2}\Rightarrow B=\left\{0;1;2;3;4\right\}\)
Bạn coi lại đề, tập hợp A nhìn rất có vấn đề :)
A = { 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11}
B = { 12; 13; 14; 15; 16; 17; 18; 19}
C = { 0; 2; 6; 12 }
Lời giải:
a)
\(\forall x\in\mathbb{Z}\) , để \(\frac{x^2+2}{x}\in\mathbb{Z}|\Leftrightarrow x+\frac{2}{x}\in\mathbb{Z}\Leftrightarrow \frac{2}{x}\in\mathbb{Z}\Leftrightarrow 2\vdots x\)
\(\Rightarrow x\in \left\{\pm 1;\pm 2\right\}\)
Vậy \(A=\left\{-2;-1;1;2\right\}\)
b)
Các tập con của A mà số phần tử nhỏ hơn 3 là:
\(\left\{-2\right\}; \left\{-1\right\};\left\{1\right\};\left\{2\right\}\)
\(\left\{-2;-1\right\}; \left\{-2;1\right\}; \left\{-2;2\right\};\left\{-1;1\right\};\left\{-1;2\right\}; \left\{1;2\right\}\)
Lời giải:
a)
\(\forall x\in\mathbb{Z}\) , để \(\frac{x^2+2}{x}\in\mathbb{Z}|\Leftrightarrow x+\frac{2}{x}\in\mathbb{Z}\Leftrightarrow \frac{2}{x}\in\mathbb{Z}\Leftrightarrow 2\vdots x\)
\(\Rightarrow x\in \left\{\pm 1;\pm 2\right\}\)
Vậy \(A=\left\{-2;-1;1;2\right\}\)
b)
Các tập con của A mà số phần tử nhỏ hơn 3 là:
\(\left\{-2\right\}; \left\{-1\right\};\left\{1\right\};\left\{2\right\}\)
\(\left\{-2;-1\right\}; \left\{-2;1\right\}; \left\{-2;2\right\};\left\{-1;1\right\};\left\{-1;2\right\}; \left\{1;2\right\}\)
X={0;4;...;2016}
SỐ phần tử là;
(2016-0):4+1=505(số)