K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2019

Bài 1 :

x2 - x - 2 = x2 - 2x + x - 2

= x( x - 2 ) + ( x - 2 ) = ( x - 2 ) ( x + 1 )

Để x3 + ax + b ⋮ ( x - 2 ) ( x + 1) thì :

x3 + ax + b = ( x - 2 ) ( x + 1 ) . Q

Vì đẳng thức trên đúng với mọi x, do đó :

+) đặt x = 2 ta có :

23 + 2a + b = ( 2 - 2 ) ( 2 + 1 ) . Q

8 + 2a + b = 0

2a + b = -8

b = -8 - 2a (1)

+) đặt x = -1 ta có :

(-1)3 + (-1)a + b = ( -1 - 2 ) ( -1 + 1 ) . Q

-1 - a + b = 0

-a + b = 1 (2)

Thay (1) vào (2) ta có :

-a - 8 - 2a = 1

<=> -3a = 9

<=> a = -3

=> b = 1 + (-3) = -2

Vậy a = -3; b = -2

27 tháng 10 2018

để đa thức \(x^4-3x^3+3x^2+ax+b\) chia hết cho đa thức \(x^2-3x+4\) thì

đặt \(x^4-3x^3+3x^2+ax+b=\left(x^2-3x+4\right)\left(x^2+mx+n\right)\)

\(=x^4+\left(m-3\right)x^3+\left(n+4-3m\right)x^2+\left(4m-3n\right)x+4n\)

đồng nhất với đa thức đã cho ta được

\(\left\{{}\begin{matrix}m-3=-3\\n+4-3m=3\\4m-3n=a\\4n=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=0\\n=-1\\a=3\\b=-4\end{matrix}\right.\)

Vậy (a,b) = (3;-4)

30 tháng 11 2017

Gọi thương của phép chia 2x3 - x2 + ax + b cho x2 - 1 là Q(x)

Ta có:  2x3 - x2 + ax + b = (x2 - 1)Q(x)

    \(\Leftrightarrow\)2x3 - x2 + ax + b = (x - 1)(x + 1)Q(x)

Vì đẳng thức trên luôn đúng với mọi x nên lần lượt cho x = 1; x = -1 ta đc:

\(\hept{\begin{cases}2-1+a+b=0\\-2-1-a+b=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=-2\\b=1\end{cases}}\)

Vậy a = -2; b = 1 thì 2x3 - x2 + ax + b chia hết cho x2 - 1

a: \(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)

=>a+12=0

hay a=-12

b: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4a-32-4a+28⋮x+4\)

=>-4a+28=0

=>a=7

c: \(\Leftrightarrow2x^3-2x-x^2+1+\left(a+2\right)x+b-1⋮x^2-1\)

=>a+2=0 và b-1=0

=>a=-2 và b=1